DOI QR코드

DOI QR Code

Evaluation of the Applicability of the Poisson Cluster Rainfall Generation Model for Modeling Extreme Hydrological Events

극한수문사상의 모의를 위한 포아송 클러스터 강우생성모형의 적용성 평가

  • 김동균 (홍익대학교 건설도시공학부) ;
  • 권현한 (전북대학교 공과대학 토목공학과) ;
  • 황석환 (한국건설기술연구원 수자원환경연구본부) ;
  • 김태웅 (한양대학교 공학대학 건설환경플랜트공학과)
  • Received : 2013.10.21
  • Accepted : 2014.03.12
  • Published : 2014.06.01

Abstract

This study evaluated the applicability of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) rainfall generation model for modeling extreme rainfalls and floods in Korean Peninsula. Firstly, using the ISPSO (Isolated Species Particle Swarm Optimization) method, the parameters of the MBLRP model were estimated at the 61 ASOS (Automatic Surface Observation System) rain gauges located across Korean Peninsula. Then, the synthetic rainfall time series with the length of 100 years were generated using the MBLRP model for each of the rain gauges. Finally, design rainfalls and design floods with various recurrence intervals were estimated based on the generated synthetic rainfall time series, which were compared to the values based on the observed rainfall time series. The results of the comparison indicate that the design rainfalls based on the synthetic rainfall time series were smaller than the ones based on the observation by 20% to 42%. The amount of underestimation increased with the increase of return period. In case of the design floods, the degree of underestimation was 31% to 50%, which increases along with the return period of flood and the curve number of basin.

본 연구는 우리나라의 극한강우와 극한홍수를 모의하기 위한 MBLRP 포아송 클러스터 강우생성모형의 적용성을 평가하였다. 국내 61개의 기상청 지상기상관측시스템의 강우량 관측지점에 대하여 고립입자 군집화 최적화(ISPSO) 기법을 적용하여 모형의 매개변수를 추정하고, 추정된 매개변수를 바탕으로 각 강우관측지점에서 100년치의 가상 강우시계열을 생성하였다. 생성된 강우시계열을 이용하여 확률강우량 및 확률홍수량을 산정하고 이 값들을 관측치에 근거하여 산정된 값들과 비교하였다. 비교 결과, 모형에 의한 확률강우량은 관측치보다 평균적으로 20~42% 작았으며, 강우의 재현기간이 증가할수록 과소산정되는 정도가 증가하였다. 확률홍수량의 경우, 모형에 의한 값이 관측치에 근거한 값보다 31%에서 50% 작았으며, 이 과소산정량은 홍수의 재현기간의 증가 및 유역의 불투수도의 증가와 함께 증가하였다.

Keywords

References

  1. Bathurst, J. C. and Bovolo, C. I. (2004). "Development of guidelines for sustainable land management in the agri and cobres target basins." Deliverable 28 of the EU funded MEDACTION Project, pp. 37, Available at: http://www.ncl.ac.uk/medaction.
  2. Bathurst, J. C., Moretti, G., El-Hames, A., Moaven-Hashemi, A. and Burton, A. (2005). "Scenario modeling of basin-scale, shallow landslide sediment yield, Valsassina, Italian southern alps." Natural Hazards and Earth System Sciences, Vol. 5, pp. 189-202. https://doi.org/10.5194/nhess-5-189-2005
  3. Brath, A., Montanari, A. and Moretti, G. (2006). "Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty)." J. Hydrology, Vol. 324, No. 1-4, pp. 141-153. https://doi.org/10.1016/j.jhydrol.2005.10.001
  4. Cho, H., Kim, D., Olivera, F. and Guikema, S. (2011). "Enhanced speciation in particle swarm optimization for multi-modal problems." European Journal of Operational Research, Vol. 213, pp. 15-23. https://doi.org/10.1016/j.ejor.2011.02.026
  5. Dawson, R., Hall, J., Speight, L., Djordjevic, S., Savic, D. and Leandro, J. (2006). "Flood risk analysis to support integrated urban drainage." Proceedings of the Fourth CIWEM Annual Conference on Emerging Environmental Issues and Future Challenges, Newcastle upon Tyne. Aqua Enviro, pp. 12-14.
  6. Fowler, H. J., Kilsby, C. G., O'Connell, P. E. and Burton, A. (2005). "A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change." Journal of Hydrology, Vol. 308, pp. 50-66. https://doi.org/10.1016/j.jhydrol.2004.10.021
  7. Gyasi-Agyei, Y. and Willgoose, G. R. (1997). "A hybrid model for point rainfall modeling." Water Resources Research, Vol. 33, No. 7, pp. 1699-1706. https://doi.org/10.1029/97WR01004
  8. Hosking, J. R. M. and Wallis, J. R. (2005). Regional frequency analysis: An Approach Based on L-moments, Cambridge University Press.
  9. Khaliq, M. and Cunnane, C. (1996). "Modelling point rainfall occurrences with the modified Bartlett-Lewis rectangular pulses model." Journal of Hydrology, Vol. 180, pp. 109-138. https://doi.org/10.1016/0022-1694(95)02894-3
  10. Kilsby, C. G., Burton, A., Birkinshaw, S. J., Hashemi, A. M. and O'Connell, P. E. (2000). "Extreme rainfall and flood frequency distribution modelling for present and future climates." Proceedings of the British Hydrological Society Seventh National Hydrology Symposium, pp. 3.51-3.56.
  11. Kim, D. and Olivera, F. (2012). "On the relative importance of the different rainfall statistics in the calibration of stochastic rainfall generation models." Journal of Hydrologic Engineering, Vol. 17, No. 3.
  12. Kim, D., Olivera, F. and Cho, H. (2013a). "Importance of Inter-annual variability of rainfall statistics in stochastically generated rainfall time series - Part I - Impact on peak and extreme rainfall values." Stochastic Environmental Research and Risk Assessment, Vol. 27, pp. 1601-1610. https://doi.org/10.1007/s00477-013-0696-z
  13. Kim, D., Olivera, F., Cho, H. and Lee, S. O., (2013b). "Importance of inter-annual variability of rainfall statistics in stochastically generated rainfall time series, Part II - Impact on watershed response variables." Stochastic Environmental Research and Risk Assessment, Vol. 27, pp. 1611-1619. https://doi.org/10.1007/s00477-013-0697-y
  14. Kim, D., Olivera, F., Cho, H. and Scolofsky, S. (2013c). "Regionalization of the parameters of the modified Bartlett-Lewis rectangular pulse model." Terrestrial, Atmospheric and Oceanic Science, Vol. 24, pp. 421-436. https://doi.org/10.3319/TAO.2012.11.12.01(Hy)
  15. Kim, D., Shin, J. Y., Lee, S. O. and Kim, T. W. (2013d). "The application of the Poisson cluster rainfall generation model to the flood analysis." J. Korea Water Resources Association, Vol. 46, No. 5, pp. 439-447 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.5.439
  16. Ministry Of Construction and Transportation (MCT) (2000). Research report on water resources management techniques. 1999, Vol. 1, Development of design rainfall maps in Korea, Ministry Of Construction and Transportation, Korea (in Korean).
  17. Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Improvement and supplement of probability rainfall, Ministry of Land, Transport and Maritime Affairs, Korea (in Korean).
  18. Moretti, G. and Montanari, A. (2004). "Estimation of the peak river flow for an ungauged mountain creek using a distributed rainfall-runoff model." In: A. Breath, A. Montanari, E. Toth (eds.), Hydrological Risk: Recent Advances in Peak River Flow Modelling, Prediction and Real-Time Forecasting -Assessment of the Impacts of Land-Use and Climate Changes, pp. 113-128.
  19. Nolan, B. T., Dubus, I. G., Surdyk, N., Fowler, H. J., Burton, A., Hollis, J. M. Reichenberger, S. and Jarvis, N. J. (2008). "Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains." Pest Management Science, Vol. 64, No. 9, pp. 933-944. https://doi.org/10.1002/ps.1587
  20. Rodriguez-Iturbe, I., Cox, D. R. and Isham, V. (1988). "A point process model for rainfall: Further Developments." Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, Vol. 417, No. 1853, pp. 283-298. https://doi.org/10.1098/rspa.1988.0061
  21. Shin, J. Y., Joo, K. W., Heo, J. H. (2011). "A study of new modified Neyman-Scott rectangular pulse model development using direct parameter estimation." Journal of Korean Water Resources Association, Vol. 44, No. 2, pp. 135-144 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.2.135

Cited by

  1. A development of downscaling scheme for sub-daily extreme precipitation using conditional copula model vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.863