DOI QR코드

DOI QR Code

Development of Failure Criterion of Hot Mix Asphalt Using Triaxial Shear Strength Test

삼축압축시험을 이용한 아스팔트 혼합물의 파괴기준 개발

  • 김성겸 (공주대학교 대학원 건설환경공학과) ;
  • 이관호 (공주대학교 공과대학 건설환경공학과)
  • Received : 2013.07.22
  • Accepted : 2014.04.09
  • Published : 2014.06.01

Abstract

In general, Fracture of the material is not occurring of the maximum normal stress or the maximum shear stress failure in the state. Maximum normal stress and maximum shear stress in the state of Critical coupling from being destroyed based on the Mohr-Coulomb theory. Couple of different mixtures, including permeable asphalt pavement, SMA and dense-graded asphalt mixture, were used for compression triaxial test at $45^{\circ}C$ and $60^{\circ}C$. Mohr-Coulomb theory to the analysis of compression triaxial test result of the internal friction angle $38.9^{\circ}{\sim}46.9^{\circ}$ measured somewhat irregularly, but in the case of cohesion, depending on whether the temperature and immersion of the specimen appeared differently. In addition, Indirect tensile test and compression triaxial test of the asphalt mixture to determine the correlation between compression triaxial test results assessed as cohesion and internal friction angle calculated using the theoretical Indirect tensile strength and measured indirectly tensile strength were analyzed. The Measured & Predicted IDT St values tended to be proportional.

일반적으로 Mohr-Coulomb 파괴 이론을 바탕으로 한 재료 파괴는 최대수직응력이나 최대전단응력 상태에서 파괴가 일어나는 것이 아니라 수직응력과 전단응력의 임계결합상태에서 파괴된다. 이에 본 연구에서는 배수성 아스팔트 혼합물 2종과 SMA 10mm혼합물 및 일반 밀입도 아스팔트 19mm를 이용한 $45^{\circ}C$$60^{\circ}C$에서 삼축압축시험을 실시하였다. Mohr-Coulomb의 파괴 이론을 바탕으로 삼축압축시험 결과를 정리한 결과 내부마찰각은 $38.9^{\circ}{\sim}46.9^{\circ}$로 다소 불규칙하게 측정되었으나 점착력의 경우 온도와 시편의 수침여부에 따라 다르게 나타났다. 또한, 아스팔트 혼합물의 간접인장강도시험과 삼축압축시험 상관관계를 알아보기 위해 삼축압축시험 결과로 평가된 점착력과 내부마찰각을 이용하여 계산된 이론적인 간접인장강도와 시험을 통해 직접 측정된 간접인장강도를 분석하였다. 두 간접인장강도 값은 비례하는 경향을 보였다.

Keywords

References

  1. Buttlar, W. and Roque, R. (1994). "Development and evaluation of the SHRP measurement and analysis system for indirect tensile testing at low temperatures." Transportation Research Board, 73rd Annual Meeting, Washington, D.C.
  2. Fwa, T. F., Tan, S. A. and Zhu, L. Y. (2004). "Rutting prediction of asphalt pavement layer using c-f model." Journal of Transportation Engineering, ASCE, Vol. 130, No. 5, pp. 675-683. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:5(675)
  3. Hondros, G. (1959). "The evaluation of poisson's ratio and modulus of materials of a low tensile resistance the brazilian (Indirect Tensile) test with particular reference to concrete." Australian Journal of Applied Science, Vol. 10, pp. 243-268.
  4. Li, Q., Lee, H. J. and Hwang, E. Y. (2010). "Characterization of permanent deformation of asphalt mixtures based on shear properties." Transportation Research Record, TRB of the National Academies, No. 2181, pp. 1-10 (in Korean).
  5. Majidzadeh, K. (1967). "Asphalt fractures." AAPT, Vol. 36, pp. 51-79.
  6. Monismith, C. L., Hicks, R. G., Finn, F. N., Sousa, J., Harvey, J., Weissman, S., Deacon, J., Coplantz, J. and Paulsen, G. (1994). Permanent deformation response of asphalt aggregate mixes, Report No. SHRP-A-415, SHRP, National Research Council, Washington, D.C.
  7. Shin, K. H., Kim, S. K. and Lee, K. H. (2012). "Evaluation of void distribution of hot mix asphalt using micro CT scanner." Journal of Korean Sociely of Hazard Mitigation, Vol. 12, No. 3, pp. 169-175 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.3.169
  8. Terhi K. P. and Shangzhi, X. (2005). "Relationship between triaxial shear strength and indirect tensile strength of hot mix asphalt." Journal of the Association of Asphalt Paving Technologists.