DOI QR코드

DOI QR Code

A Study on the Thermal Stability of an Al2O3/SiON Stack Structure for c-Si Solar Cell Passivation Application

결정질 실리콘 태양전지의 패시베이션 적용을 위한 Al2O3/SiON 적층구조의 열적 안정성에 대한 연구

  • Cho, Kuk-Hyun (Graduate School of Energy Science Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Graduate School of Energy Science Technology, Chungnam National University)
  • 조국현 (충남대학교 에너지과학기술대학원) ;
  • 장효식 (충남대학교 에너지과학기술대학원)
  • Received : 2014.02.13
  • Accepted : 2014.03.20
  • Published : 2014.05.31

Abstract

We investigated the influence of blistering on $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks passivation layers. $Al_2O_3$ film provides outstanding Si surface passivation quality. $Al_2O_3$ film as the rear passivation layer of a p-type Si solar cell is usually stacked with a capping layer, such as $SiO_2$, SiNx, and SiON films. These capping layers protect the thin $Al_2O_3$ layer from an Al electrode during the annealing process. We compared $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks through surface morphology and minority carrier lifetime after annealing processes at $450^{\circ}C$ and $850^{\circ}C$. As a result, the $Al_2O_3$/SiON stacks were observed to produce less blister phenomenon than $Al_2O_3$/SiNx:H stacks. This can be explained by the differences in the H species content. In the process of depositing SiNx film, the rich H species in $NH_3$ source are diffused to the $Al_2O_3$ film. On the other hand, less hydrogen diffusion occurs in SiON film as it contains less H species than SiNx film. This blister phenomenon leads to an increase insurface defect density. Consequently, the $Al_2O_3$/SiON stacks had a higher minority carrier lifetime than the $Al_2O_3$/SiNx:H stacks.

Keywords

References

  1. G. Dingemans, W. Beyer, M. C. M. v. d Sanden, and W. M. M. kessels, "Hydrogen Induced Passivation of Si Interface by Al2O3 Films and $SiO_2/Al_2O_3$ Stacks," Appl. Phys. Lett., 97 [15] 152106 (2010). https://doi.org/10.1063/1.3497014
  2. J. Kim, D.-R. Kwon, K.-Y. Oh, and C. Lee, "Improvement in $Al_2O_3$ Dielectric Behavior by Using Ozone as an Oxidant for Theatomic Layer Deposition Technique," J. Kor. Vac. Soc., 11 [3] 183-88 (2002)
  3. B. Kafle, S. Kuenhold, W. Beyer, S. Lindekugel, P. Saint-Cast, M. Hofmann, and J. Rentsch, "Thermal Stability Investigations of PECVD $Al_2O_3$ Fiim Discussing a Possibilty of Improving Surface Passivation by Re-hydrogenation after High Themperature Processes," pp. 1788-92, 27th EU-PVESEC 2012 Frankfurt, Germany.
  4. Y.-T. Kim, S.-M. Cho, Y.-G. Seo, Y.-M. Im, and D.-H. Yoon, "The Effect of RF Power and $SiH_4/(N_2O+N_2)$ Ratio in Properties of SiON Thick Film for Silica Optical Waveguide(in Korean)," J. Kor. Ceram. Soc., 38 [12] 1150-54 (2001).
  5. T. Ludera, T. Lauermann, A. Zuschlag, G. Hahn, and B. Terheiden, "$Al_2O_3$/SiNx-Stacks at Increased Temperatures: Avoiding Blistering During Contact Firing," Energy Procedia, 27 426-31 (2012). https://doi.org/10.1016/j.egypro.2012.07.088
  6. M. I. Alayoa, I. Pereyraa, W. L. Scopelb, and M. C. A. Fantinib, "On the Nitrogen and Oxygen Incorporation in Plasma-enhanced Chemicalvapor Deposition (PECVD) SiOxNy Films," Thin Solid Films, 402 [1-2] 154-61 (2002). https://doi.org/10.1016/S0040-6090(01)01685-6
  7. J. Dupuis, E. Fourmond, J. F. Lelievre, D. Ballutaud, and M. Lemiti, "Impact of PECVD SiON Stoichiometry and Post-annealing on the Silicon Surface Passivation," Thin Solid Films, 516 [20] 6954-58 (2008). https://doi.org/10.1016/j.tsf.2007.12.026
  8. B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti,, A. Rothschild, J. John, J. Poortmans, and R. Mertens, "Blistering in ALD $Al_2O_3$ Passivation Layers as Rear Contacting for Local Al BSF Si Solar Cells," Sol. Energy Mater. Sol. Cells, 101 204-09 (2012). https://doi.org/10.1016/j.solmat.2012.01.032
  9. P. F. Becher, "Recent Advances in Microstructural Tailoring of Silicon Nitride Ceramics and the Effects on Thermal Conductivity and Fracture Properties," J. Kor. Ceram. Soc., 42 [8] 525-31 (2005). https://doi.org/10.4191/KCERS.2005.42.8.525
  10. V. Naumanna, M. Ottob, R. B. Wehrspohnb, M. Wernera, and C. Hagendorfa, "Interface and Material Characterization of Thin ALD-$Al_2O_3$ Layers on Crystalline Silicon," Silicon PV: April 03-05, 2012, Leuven, Belgium.
  11. S. Kuhnhold, B. Kafle, L. Kroely, P. Saint-Cast, M. Hofmann, J. Rentsch, and R. Preu, "Impact of Thermal Treatment on PECVD $Al_2O_3$ Passivation Layers," Energy Procedia, 27 273-79 (2012). https://doi.org/10.1016/j.egypro.2012.07.063
  12. S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. Bartha, "Crystallization Behavior of Thin ALD-$Al_2O_3$ Films," Thin Solid Films, 425 [1-2] 216-20 (2003). https://doi.org/10.1016/S0040-6090(02)01262-2
  13. G. Dingemans, P. Engelhart, R. Seguin, F. Einsele, B. Hoex, M. C. M. Van de Sanden, and W. M. M. Kessels, "Stability of $Al_2O_3$ and $Al_2O_3$.a-SiNx:H Stacks for Surface Passivation of Crystalline Silicon," J. Appl. Phys., 106 114907 (2009). https://doi.org/10.1063/1.3264572

Cited by

  1. N형 양면 수광 태양전지를 위한 레이저 공정의 후면 패시베이션 적층 구조 영향성 vol.30, pp.5, 2014, https://doi.org/10.3740/mrsk.2020.30.5.262