DOI QR코드

DOI QR Code

Thin Layer Drying and Quality Characteristics of Ainsliaea acerifolia Sch. Bip. Using Far Infrared Radiation

원적외선을 이용한 단풍취의 박층 건조 및 품질 특성

  • Ning, Xiao Feng (Dept. of Agricultural Mechanization Engineering, Shenyang Agricultural University) ;
  • Li, He (Dept. of Mechatronics Engineering, Henan Agricultural University) ;
  • Kang, Tae Hwan (Major in Bio-Industry Mechanical Engineering, Kongju National University) ;
  • Lee, Jun Soo (Dept. of Food Science & Technology, Chungbuk National University) ;
  • Lee, Jeong Hyun (Dept. of Biosystems Engineering, Chungbuk National University) ;
  • Ha, Chung Su (Dept. of Biosystems Engineering, Chungbuk National University)
  • 녕효봉 (선양농업대학교 농업기계학과) ;
  • 리혁 (하남농업대학교 메카트로닉스공학과) ;
  • 강태환 (공주대학교 생물생산기계공학전공) ;
  • 이준수 (충북대학교 식품공학과) ;
  • 이정현 (충북대학교 바이오시스템공학과) ;
  • 한충수 (충북대학교 바이오시스템공학과)
  • Received : 2014.04.07
  • Accepted : 2014.06.05
  • Published : 2014.06.30

Abstract

The purpose of this study was to investigate the drying characteristics and drying models of Ainsliaea acerifolia Sch. Bip. using far-infrared thin layer drying. Far-infrared thin layer drying test on Ainsliaea acerifolia Sch. Bip. was conducted at two air velocities of 0.6 and 0.8 m/sec, as well as three drying temperatures of 40, 45, and $50^{\circ}C$ respectively. The drying models were estimated using coefficient of determination and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, leaf color changes, antioxidant activity, and contents of polyphenolics and flavonoids. The results revealed that increases in drying temperature and air velocity caused a reduction in drying time. The Thompson model was considered suitable for thin layer drying using far-infrared radiation for Ainsliaea accerifolia Sch. Bip. Greenness and yellowness values decreased and lightness values increased after far-infrared thin layer drying, and the color difference (${\Delta}E$) values at $40^{\circ}C$ were higher than those at $45^{\circ}C$ and $50^{\circ}C$. The antioxidant properties of Ainsliaea acerifolia Sch. Bip. decreased under all far-infrared thin layer drying conditions, and the highest polyphenolic content (37.9 mg/g), flavonoid content (22.7 mg/g), DPPH radical scavenging activity (32.5), and ABTS radical scavenging activity (31.1) were observed at a drying temperature of $40^{\circ}C$ with an air velocity of 0.8 m/sec.

본 연구에서는 원적외선 이용하여 단풍취를 박층 건조할 경우 건조온도와 송풍속도에 따른 건조특성과 건조제품의 색도 변화를 조사하였고, 건조 전후 취나물의 항산화 성분과 항산화력 변화를 분석함으로써 고품질의 원적외선 건조 취나물 제품 생산을 위한 기초 자료를 제시하고자 하였다. 단풍취의 건조속도는 원적외선 박층 건조온도와 송풍속도가 증가할수록 빨라지고, 건조시간이 단축되는 것으로 나타났다. 특히 원적외선 박층 건조온도 $50^{\circ}C$의 송풍속도 0.8m/sec에서 건조속도가 가장 빠른 것으로 나타났다. 본 연구에서 검증한 건조모델 중 Thompson 모델은 결정계수가 0.9826 이상, RMSE는 0.1277 이하로 나타나, Lewis, Page, Henderson 모델보다 단풍취의 원적외선 박층 건조 시 함수율비 예측 정밀도가 높은 것으로 나타났다. 원적외선 박층건조 후 단풍취의 ${\Delta}L$(명도)값은 원적외선 건조온도와 송풍속도가 빠를수록 증가하는 경향을 보였고, ${\Delta}a$(적색도/녹색도)와 ${\Delta}b$(황색도) 값은 원적외선 건조온도가 낮고, 송풍속도가 느릴수록 갈변하는 현상이 심화되는 것으로 나타났다. 원적외선 박층 건조 후 단풍취의 ${\Delta}E$(색차)값도 원적외선 건조온도가 낮고, 송풍속도가 느릴수록 증가하는 경향을 보였다. 항산화 성분인 폴리페놀 함량의 경우 원적외선 건조온도가 높을수록 감소량이 증가하였고 원적외선 박층 건조 후 37.36~55.21% 감소하는 경향을 보였으며, 원적외선 박층건조조건 중 원적외선 건조온도 $40^{\circ}C$의 송풍속도 0.8m/sec와 $45^{\circ}C$의 송풍속도 0.6 m/sec 조건에서 감소율이 낮은 것으로 나타났다. 플라보노이드 함량의 경우에도 원적외선 박층 건조 후 32.24~44.18% 감소하는 것으로 나타났고, 원적외선 건조온도 $40^{\circ}C$의 송풍속도 0.8 m/sec와 $45^{\circ}C$의 송풍속도 0.8 m/sec 조건에서 감소율이 낮은 것으로 나타났다. 항산화력의 경우에도 원적외선 건조온도가 높을수록 감소하는 경향을 보였고, 원적외선 건조조건 중 $40^{\circ}C$의 송풍속도 0.8 m/sec와 $45^{\circ}C$의 송풍속도 0.6 m/sec 조건에서 항산화력 감소율이 다른 건조조건보다 낮은 것으로 나타났다. 따라서 단풍취의 건조시간, 건조 중 변색, 항산화 성분 및 항산화력 등을 고려하면 단풍취 건조제품의 고품질화를 위해서는 원적외선 박층 건조온도 $45^{\circ}C$의 송풍속도 0.6, 0.8 m/sec가 적절한 건조조건으로 판단된다.

Keywords

References

  1. Shin KH, Lee SH, Cho DH, Park CH. 1998. Analysis of vitamins and general components in the leaves of Chwinamul. Korean J Plant Res 11: 163-167.
  2. Chung TY, Eiserich JP, Shibamoto T. 1993. Volatile compounds isolated from edible Korean chamchwi (Aster scaber Thumb). J Agric Food Chem 41: 1693-1697. https://doi.org/10.1021/jf00034a033
  3. Ning X, Han C, Cho S, Lee J, Yoon S. 2013. Far-infrared drying characteristics and quality assessment of Ligularia fischeri. Food Sci Biotechnol 22(S): 281-288. https://doi.org/10.1007/s10068-013-0078-9
  4. Lee MK, Kim SH, Ham SS, Lee SY, Chung CK, Kang IJ, Oh DH. 2000. The effect of far infrared ray-vacuum drying on the quality changes of Pimpinella bracycarpa. J Korean Soc Food Sci Nutr 29: 561-567.
  5. Kim SY, Jeong SM, Lee SC. 2004. Effect of far-infrared irradiation on the antioxidant activity and catechin of green tea. J Korean Soc Food Sci Nutr 33: 753-756. https://doi.org/10.3746/jkfn.2004.33.4.753
  6. Kim CF, Li H, Han CS, Park JS, Lee HC, Cho SC. 2007. Drying characteristics of oak mushroom using stationary far-infrared dryer. J Biosystems Eng 32: 6-12. https://doi.org/10.5307/JBE.2007.32.1.006
  7. Li H. 2009. Drying and quality characteristics of agricultural and fishery products using far infrared rays. PhD Dissertation. Chungbuk National University, Cheongju, Korea.
  8. Shin KH, Lee SH, Cho DH, Park CH. 1998. Analysis of vitamins and general components in the leaves of Chwinamul. Korean J Plant Res 11: 163-167.
  9. Cho DH, Shin SE, Heo K, Yu CY. 1998. Study on matter production and photosynthetic characteristics in wild vegetable. Korean J Plant Res 11: 307-314.
  10. Yon KS, Kim MH, Han CS, Cho SC, Kang TH, Lee HC, Kim CB, Kim JK. 2004. Drying characteristics of oak mushroom using conveyer far infrared dryer - down draft air flow type -. J Biosystems Eng 29: 37-44. https://doi.org/10.5307/JBE.2004.29.1.037
  11. Altan A, Maskan M. 2005. Microwave assisted drying of short-cut (ditalini) macaroni: drying characteristics and effect of drying processes on starch properties. Food Res Int 38: 787-796. https://doi.org/10.1016/j.foodres.2005.02.006
  12. Ning XF, Han CS, Li H. 2012. A mathematical model for color changes in red pepper during far infrared drying. J Biosystems Eng 37: 327-334. https://doi.org/10.5307/JBE.2012.37.5.327
  13. Page GE. 1949. Factors influencing the maximum rates of air drying shelled corn in thin layers. MS Thesis. Purdue University, West Lafayette, IN, USA.
  14. Bruce DM. 1985. Exposed-layer barley drying, three models fitted to new data up to 150°C. J Agric Eng Res 32: 337-348. https://doi.org/10.1016/0021-8634(85)90098-8
  15. Westerman PW, White GM, Ross IJ. 1973. Relative humidity effect on the high-temperature drying of shelled corn. Trans ASAE 16: 1136-1139. https://doi.org/10.13031/2013.37715
  16. Feng H, Tang J. 1998. Microwave finish drying of diced apples in a spouted bed. J Food Sci 63: 679-683.
  17. Lee SK, Park WJ, Kim W, Kang MH, Jeon MJ, Paik SW, Han JW. 2010. Analysis of the drying characteristics of Lycii fructus with drying plates. J Biosystems Eng 35: 250-256. https://doi.org/10.5307/JBE.2010.35.4.250
  18. Choi YM, Jeong HS, Lee JS. 2007. Antioxidant activity of methanolic extracts from some grain consumed in Korea. Food Chem 103: 130-138. https://doi.org/10.1016/j.foodchem.2006.08.004
  19. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50:4959-4964. https://doi.org/10.1021/jf0255937
  20. Liu HY, Qiu NX, Ding HH, Yao RQ. 2008. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res Int 41: 363-370. https://doi.org/10.1016/j.foodres.2007.12.012
  21. Jia Z, Tang M, Wu J. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Wang NR. 2002. Yan ye de tiao zhi yu fen ji. Press of University of Science and Technology of China, Hefei, China. p 83-85.
  24. Kooli S, Fadhel A, Farhat A, Belghith A. 2007. Drying of red pepper in open sun and greenhouse conditions: mathematical modeling and experimental validation. J Food Eng 79: 1094-1103. https://doi.org/10.1016/j.jfoodeng.2006.03.025
  25. Vega-Galvez A, Lemus-Mondaca R, Bilbao-Sainz C, Fito P, Andres A. 2008. Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). J Food Eng 85: 42-50. https://doi.org/10.1016/j.jfoodeng.2007.06.032

Cited by

  1. Drying Characteristics of Sea Tangle Using Combination of Microwave and Far-Infrared Dryer vol.41, pp.1, 2016, https://doi.org/10.5307/JBE.2016.41.1.043
  2. Far Infrared Drying Characteristics of Seasoned Red Pepper Sauce Dried by Heated Air vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1358
  3. Application of infrared-assisted steam blanching to improve enzymatic inactivation and quality retention of Chrysanthemum indicum L. flower vol.56, pp.9, 2014, https://doi.org/10.1007/s13197-019-03897-1
  4. Effects of combined infrared and steam blanching on enzyme inactivation and product quality of Chrysanthemum indicum L. flower vol.43, pp.10, 2014, https://doi.org/10.1111/jfpp.14119