DOI QR코드

DOI QR Code

Study on the elution of biostimulant for in-situ bioremediation of contaminated coastal sediment

오염된 연안저질의 현장생물정화를 위한 미생물활성촉진제의 용출특성 연구

  • Received : 2013.12.17
  • Accepted : 2014.05.12
  • Published : 2014.06.30

Abstract

A study on the elution characteristics of biostimulating agents (sulfate and nitrate) from biostimulants which are used for in-situ bioremediation for the coastal sediment contaminated with organic matter was performed. The biostimulating agents were mixed with the coastal sediment, and then massed the mixture into ball. Two kinds of ball type biostimulant were prepared by coating the ball surface with two different polymers, cellulose acetate and polysulfone. A granular type biostimulant (GTB) was also prepared by impregnating a granular activated carbon in the biostimulating agent solution. The image of scanning electron microscopy for the biostimulant coated with cellulose acetate (CAB) showed that the inner side of the coating layer consisted of irregular and bigger size of pores, and the surface layer had tight structure like beehive. For the biostimulant coated with polyfulfone (PSB), the whole coating layer had a fine structure without pore. The elution rate of the biostimulating agents for the CAB was higher than that for the PSB, and the elution rate for the GTB was considerably higher than that for the PSB in distilled water as well as in sea water. The elution rate of the biostimulating agents in turbulent water flow was about 3 times higher than that in standing water, and the elution rate of nitrate was higher than that of sulfate from the stimulating agents.

자생하는 미생물의 활성을 촉진시킴으로써 오염된 연안퇴적물을 현장생물정화하기 위하여 사용하는 미생물활성촉진제의 용출특성에 대한 연구를 수행하였다. 미생물의 생리활성을 촉진하는 황산염, 질산염을 오염되지 않은 연안퇴적물과 혼합하였으며, 혼합물을 볼 형태로 만든 뒤 셀룰로스 아세테이트 및 폴리설펀으로 각각 표면을 코팅하여 볼 형태의 미생물활성촉진제 2종을 제작하였다. 또한, 황산염과 질산염이 용해된 생리활성물질 용액에 입상활성탄을 침지시켜 입자상 미생물활성촉진제를 별도로 준비하였다. 셀룰로스 아세테이트로 코팅한 미생물활성촉진제를 전자현미경으로 관찰한 결과 코팅층 내부는 다소 큰 공극이 불규칙적으로 존재하였으나 코팅층 외부는 촘촘한 벌집모양의 공극들이 분포되어있었다. 폴리설펀으로 코팅한 미생물활성촉진제의 경우는 코팅층의 내부와 외부 모두 공극이 없는 치밀한 구조를 보였다. 셀룰로스 아세테이트로 코팅한 미생물활성촉진제의 생리활성물질 용출율은 폴리설펀으로 코팅한 미생물활성촉진제에 비해 증류수와 해수에서 모두 높았으며, 입자상 미생물활성촉진제로부터의 생리활성물질의 용출율은 폴리설펀으로 코팅한 미생물활성촉진제에 비해 약 9배 이상 높았다. 미생물활성촉진제로부터 생리활성물질들의 용출속도는 정체조건에 비해 난류조건에서 약 3배 이상 빠른 것으로 평가되었으며, 생리활성물질들 중에서 질산염은 황산염에 비해 빠르게 용출되는 특성을 보였다.

Keywords

References

  1. APHA(American Public Health Association). (2005), Standard methods for the examination of waste and wastewater, 21th ed. Washington, DC: APHA, AWWA, PP. 2-56.
  2. AwwaRF(American Water Works Association Research Foundation). (2004), Bioreactor systems for treating perchlorate contaminated water: Bench-scale and Pilot-scale investigations, AwwaRF, PP. 113-133.
  3. Beller, H. R., Grbic-Galic, D. and Reinhard, M. (1992), "Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process", Applied and Environmental Microbiology, Vol. 58, No. 3, pp. 786-793.
  4. Cheryan, M. (1998), Ultrafiltration and microfiltration handbook, Technomic Publishing Co.: Lancaster, PA, pp. 41-50.
  5. Clack R. B. (1992), Metals. Marine Pollution, Oxford University Press, pp. 64-82.
  6. Edwards, E. A. and Grbic-Galic, D. (1992), "Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions", Applied and Environmental Microbiology, Vol. 58, No. 8, pp. 2663-2666.
  7. Farhadian, M., Vachelard, C., Duchez, D. and Larroche, C. (2008), "In situ bioremediation of monoaromatic pollutants in groundwater: A review", Bioresource Technology, Vol. 99, No. 13, pp. 5296-5308. https://doi.org/10.1016/j.biortech.2007.10.025
  8. Forstner, U. and Apitz, S.E. (2007), "Sediment remediation: U.S. Focus on capping and monitored natural recovery", Journal of Soils and Sediments, Vol. 7, No. 6, pp. 351-358. https://doi.org/10.1065/jss2007.10.256
  9. Flyvbjerg, J., Arivn, E., Jensen, B. K. and Olsen, S. K. (1993), "Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated of groundwater of under nitrate-reducing conditions", Journal of Contaminant Hydrology, Vol. 12, No. 1-2, pp. 133-50. https://doi.org/10.1016/0169-7722(93)90018-N
  10. Harmsen, J., Wieggers, H.J.J., van de Akker, J.J.H. and van Diik-Hooyer, O.M. (1997), "Intensive and extensive treatment of dredged sediments on landfarms". Bioremediation international symposium 4th, Vol. 2, pp. 153-158.
  11. Hill, D. (1984), "Diffusion coefficients of nitrate, chloride, sulphate and water in cracked and uncracked chalk", Journal of soil science, Vol. 35, No. 1, pp. 27-33. https://doi.org/10.1111/j.1365-2389.1984.tb00256.x
  12. Hughes, J. B., Beckles, D.M., Chandra, S.D., and Ward, C.H. (1997), "Utilization of bioremediation processes for the treatment of PHA contaminated sediments", Journal of Industrial Microbiology & Biotechnology, Vol. 18, pp. 152-160. https://doi.org/10.1038/sj.jim.2900308
  13. Jacobs, D. F., Salifu, K. F. and Seifert, J. R. (2005), "Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting", Forest Ecology and Management, Vol. 214, pp. 28-39. https://doi.org/10.1016/j.foreco.2005.03.053
  14. Jarosiwicz, A. and Tomaszewska, M. (2003), "Controlled-release NPK fertilizer encapsulated by polymeric membranes", Journal of Agricultural and Food Chemistry, Vol. 51, No. 2, pp. 413-417. https://doi.org/10.1021/jf020800o
  15. Kim, K. R., Kim, S. H., Choi, S. H. and Kim, C. J. (2011), "Case study of monitoring in environmental dredging project", Journal of Korean Environmental Dredging Society, Vol. 1, No. 1, pp. 33-52.
  16. Liang, R., Liu, M., and Wu, L. (2007), "Controlled release NPK compound fertilizer with the function of water retention". Reactive and Functional Polymers, Vol. 67, No. 9, pp. 769-779. https://doi.org/10.1016/j.reactfunctpolym.2006.12.007
  17. Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P. and Siegel, D. I. (1989), "Oxidation of aromatic contaminants coupled to microbial iron reduction", Nature, Vol. 339, No. 6222, pp. 297-300. https://doi.org/10.1038/339297a0
  18. Lovley, D. R. and Lonergan, D. J. (1990), "Anaerobic oxidation of toluene, phenol, p-cresol by the dissimilatory iron-reducing organism GS-15", Applied and Environmental Microbiology, Vol. 56, No. 6, pp. 1858-1864.
  19. Lovley, D. R. and Coates, D. J. (1995), "Benzene Oxidation Coupled to Sulfate Reduction", Applied and Environmental Microbiology, Vol. 61, No. 3, pp. 953-958.
  20. Mohan, R. K., Brown, M. P. and Barnes, C. R. (2000), "Design criteria and theoretical basis for capping contaminated marine sediments", Applied ocean research, Vol. 22, No. 2, pp. 85-93. https://doi.org/10.1016/S0141-1187(00)00003-1
  21. Park, K. S. and Chun, H. D. (2002), "Application of Steel Slag for Suppressing Contaminant Liberationfrom the Sea Sediment", RIST Resercher, Vol. 16, No. 2, pp. 132-139.
  22. Rabus, R., Nordhaus, R., Ludwig, W. and Widdel, F. (1993), "Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium", Applied and Environmental Microbiology, Vol. 59, No. 5, pp. 1444-1451.
  23. Song, Y. C., Senthilkumar, P. and Woo, J. H. (2013), "Effect of biostimulation on growth of indigenous microorganisms in contaminated marine sediments", The Korean Society for Marine Environment & Energy, pp. 49-50.
  24. Tessier, A., Campbell, P. G. C. and Bisson, M. (1979), "Sequential extraction procedure for the speciation of particulate trace metals", Analytical Chemistry. Vol. 51 No. 7, pp. 844-851. https://doi.org/10.1021/ac50043a017
  25. Ocean Chemical Processes (2014), Retrieved December 2, http://www.waterencyclopedia.com/Mi-Oc/Ocean- Chemical-Processes.html.
  26. Tomaszewska, M. and Jarosiewicz, A. (2002), "Use of polysulfone in controlled-release NPK fertilizer formulations", Journal of Agriculture and Food Chemistry, Vol. 50, No. 16, pp. 4634-4639. https://doi.org/10.1021/jf0116808
  27. U.S. EPA (2005), The Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC. EPA-540-R-05-012.

Cited by

  1. Effect of the Applied Biostimulant Depth on the Bioremediation of Contaminated Coastal Sediment vol.39, pp.4, 2015, https://doi.org/10.5394/KINPR.2015.39.4.345