DOI QR코드

DOI QR Code

The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

  • Kim, Ji Soo (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Yong Hwan (Korea Institute of Planning & Evaluation for Technology on Food, Agriculture, Forestry & Fisheries) ;
  • Anderson, Anne J. (Department of Biology, Utah State University) ;
  • Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • Received : 2013.11.07
  • Accepted : 2014.01.24
  • Published : 2014.06.01

Abstract

The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

Keywords

References

  1. Anderson, A. J., Britt, D. W., Johnson, J., Narasimhan, G. and Rodriguez, A. 2005. Physicochemical parameters influencing the formation of biofilms compared in mutant and wild-type cells of Pseudomonas chlororaphis O6. Water Sci. Technol. 52:21-25.
  2. Balaban, M. and Hendrixson, D. R. 2011. Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLoS Pathog. 7:e1002420. https://doi.org/10.1371/journal.ppat.1002420
  3. Balaban, M., Joslin, S. N. and Hendrixson, D. R. 2009. FlhF and its GTPase activity are required for distinct processes in flagella gene regulation and biosynthesis in Campylobacter jejuni. J. Bacteriol. 191:6602-6611. https://doi.org/10.1128/JB.00884-09
  4. Chancey, S. T., Wood, D. W., Pierson, E. A. and Pierson, L. S. 2002. Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Appl. Environ. Microbiol. 68:3308-3314. https://doi.org/10.1128/AEM.68.7.3308-3314.2002
  5. Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABAindependent stomatal closure. Plant Pathol. J. 28:202-206. https://doi.org/10.5423/PPJ.2012.28.2.202
  6. Foynes, S., Dorrel, N., Ward, S. J., Zhang, Z. W., McColm, A. A., Farthing, M. J. and Wren, B. W. 1999. Functional analysis of the roles of FliQ and FlhB in flagellar expression in Helicobacter pylori. FEMS Microbiol. Lett. 174:33-39. https://doi.org/10.1111/j.1574-6968.1999.tb13546.x
  7. Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant Pathol. 7:463-472. https://doi.org/10.1111/j.1364-3703.2006.00352.x
  8. Hickman, J. W. and Harwood, C. S. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:376-389. https://doi.org/10.1111/j.1365-2958.2008.06281.x
  9. Jyot, J., Dasgupta, N. and Ramphal, R. 2002. FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J. Bacteriol. 184: 5251-5260. https://doi.org/10.1128/JB.184.19.5251-5260.2002
  10. Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137-143. https://doi.org/10.1016/j.gene.2003.10.004
  11. Kang, B. R., Han, S. H., Zdor, R. E., Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim, Y. C. 2007. Inhibition of seed germination and induction of systemic resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586-593.
  12. Kang, B. R., Yang, K. Y., Cho, B. H., Han, T. H., Kim, I. S., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr. Microbiol. 52:473-476. https://doi.org/10.1007/s00284-005-0427-x
  13. Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson III, L. S. and Ryu, C.-M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555. https://doi.org/10.1128/AEM.01867-10
  14. Kusumoto, A., Kamisaka, K., Yakushi, T., Terashima, H., Shinohara, A. and Homma, M. 2006. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. J. Biochem. 139:113-121. https://doi.org/10.1093/jb/mvj010
  15. Kusumoto, A., Shinohara, A., Terashima, H., Kojima, S., Yakushi, T. and Homma, M. 2008. Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology 154:1390-1399. https://doi.org/10.1099/mic.0.2007/012641-0
  16. Loper, J. E., Hassan, K. A., et al. 2012. Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 7:e1002784.
  17. Martinez-Granero, F., Navazo, A., Barahona, E., Redondo-Nieto, M., Rivilla, R. and Marin, M. 2012. The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PLoS ONE 7:e31765. https://doi.org/10.1371/journal.pone.0031765
  18. Martinez-Granero, F., Rivilla, R. and Martin, M. 2006. Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl. Environ. Microbiol. 72:3429-3434. https://doi.org/10.1128/AEM.72.5.3429-3434.2006
  19. Mukherjee, A. and Lutkenhaus, J. 1998. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17:462-469. https://doi.org/10.1093/emboj/17.2.462
  20. Murray, T. S. and Kazmierczak, B. I. 2013. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 195:1051-1060. https://doi.org/10.1128/JB.02013-12
  21. Navazon, A., Barahona, E., Redondo-Nieto, M., Martinez-Granero, F. and Rivilla R. 2009. Three independent signalling pathways repress motility in Pseudomonas fluorescens F113. Microbiol. Biotech. 2:489-498. https://doi.org/10.1111/j.1751-7915.2009.00103.x
  22. Oh, S, A., Kim, J. S., Park, J. Y., Han, S. H., Dimkpa, C., Anderson, A. J. and Kim, Y. C. 2013. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29:323-329. https://doi.org/10.5423/PPJ.NT.01.2013.0013
  23. O'Toole, G. A. and Kolter, R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295-304. https://doi.org/10.1046/j.1365-2958.1998.01062.x
  24. Park, J. Y., Oh, S. A., Anderon, A. J., Neiswender, J., Kim, J.-C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
  25. Poritsanos, N., Selin, C., Fernando, W. G., Nakkeeran, S. and de Kievit, T. R. 2006. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Can. J. Microbiol. 52:1177-1188. https://doi.org/10.1139/w06-079
  26. Rashid, M. H., Rao, N. N. and Kornberg, A. 2000. Inorganic polyphosphate is required for motility of bacterial pathogens. J. Bacteriol. 182:225-227. https://doi.org/10.1128/JB.182.1.225-227.2000
  27. Schmidt-Eisenlohr, H., Gast, A. and Baron, C. 2003. Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Appl. Environ. Microbiol. 69:1817-1826. https://doi.org/10.1128/AEM.69.3.1817-1826.2003
  28. Schniederberend, M., Abdurachim, K., Murray, T. S. and Kazmierczak, B. I. 2013. The GTPase activity of FlhF is dispensable for flagellar localization, but not motility, in Pseudomonas aeruginosa. J. Bacteriol. 195:1051-1060. https://doi.org/10.1128/JB.02013-12
  29. Spencer, M., Ryu, C.-M., Yang, K.-Y., Kim, Y. C., Kloepper, J. W. and Anderson, A. J. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol. Mol. Plant Pathol. 63:27-34. https://doi.org/10.1016/j.pmpp.2003.09.002
  30. Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J. and Michiels, J. 2008. Living on a surface: swarming and biofilm formation. Trends Microbiol. 16:496-506. https://doi.org/10.1016/j.tim.2008.07.004

Cited by

  1. Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6 vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.NT.02.2014.0012
  2. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137553
  3. Relationship of the CreBC two-component regulatory system and inner membrane protein CreD with swimming motility in Stenotrophomonas maltophilia vol.12, pp.4, 2017, https://doi.org/10.1371/journal.pone.0174704
  4. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0172
  5. Genome-wide analysis of the FleQ direct regulon in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440 vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-31371-z