DOI QR코드

DOI QR Code

Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6

  • Kim, Chul Hong (Department of Floriculture, Chunnam Techno University) ;
  • Kim, Yong Hwan (Korea Institute of Planning & Evaluation for Technology on Food, Agriculture, Forestry & Fisheries) ;
  • Anderson, Anne J. (Department of Biology, Utah State University) ;
  • Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • Received : 2014.02.04
  • Accepted : 2014.03.27
  • Published : 2014.06.01

Abstract

The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium.

Keywords

References

  1. Ananthaswamy, H. N. and Eisenstark, A. 1977. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. J. Bacteriol. 130:187-191.
  2. Anderson, A. J., Britt, D. W., Johnson, J., Narisimhan, G. and Rodriguez. 2005. Physicochemical parameters influencing the of Pseudomonas chlororaphis O6. Water Sci. Tech. 52:21-25.
  3. Bateman, A. and Bycroft, M. 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglyosylate D (MltD). J. Mol. Biol. 299:1113-1119. https://doi.org/10.1006/jmbi.2000.3778
  4. Bitter, W. 2003. Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch. Microbiol. 179:307-314. https://doi.org/10.1007/s00203-003-0541-8
  5. Bloemberg, G. V. and Lugtenberg, B. J. J. 2001. Multiple basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
  6. Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L. and Lory, S. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73:434-445. https://doi.org/10.1111/j.1365-2958.2009.06782.x
  7. Briggs, G. S., Yu, J., Mahdi, A. A. and Lloyd, R. G. 2010. The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA. Nucleic Acids Res. 38:6433-6446. https://doi.org/10.1093/nar/gkq509
  8. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  9. Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28:202-206. https://doi.org/10.5423/PPJ.2012.28.2.202
  10. Crespo, M. C. A. and Valverde, C. 2009. A single mutation in the oprF mRNA leader confers strict translational control by the Gac/Rsm system in Pseudomonas fluorescens CHA0. Curr. Microbiol. 58:182-188. https://doi.org/10.1007/s00284-008-9306-6
  11. Dubis, C., Keel, C. and Haas, D. 2007. Dialogues of root-colonizing biocontrol pseudomonads. Eur. J. Plant Pathol. 119:311-328. https://doi.org/10.1007/s10658-007-9157-1
  12. Elhai, J. and Wolk, C. P. 1988. A versatile class of positiveselection vectors based on the nonviability of palindromecontaining plasmids that allows cloning into long polylinkers. Gene 68:119-138. https://doi.org/10.1016/0378-1119(88)90605-1
  13. Fito-Boncompte, L., Chapalain, A., Bouffartigues, E., Chaker, H., Lesouhaitier, O., Gicquel, G. Bazire, A., Madi, A., Connil, N., Veron, W., Taupin, L., Toussaint, B., Cornelis, P., Wei, Q., Shioya, K., Deziel, E., Feuilloley, M. G. J., Orange, N., Dufour, A. and Chevalier, S. 2011. Full virulence of Pseudomonas aeruginosa requires OprF. Infect. Immun. 79:1176-1186. https://doi.org/10.1128/IAI.00850-10
  14. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319. https://doi.org/10.1038/nrmicro1129
  15. Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant Pathol. 7:463-472. https://doi.org/10.1111/j.1364-3703.2006.00352.x
  16. Hassan, K. A., Johnson, A., Shaffer, B. T., Ren, Q., Kidarsa, T. A., Elbourne, L. D. H., Hartney, S., Duboy, R., Goebel, N. C., Zabriskie, T. M., Paulsen, I. T. and Loper, J. E. 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 12:899-915. https://doi.org/10.1111/j.1462-2920.2009.02134.x
  17. Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137-143. https://doi.org/10.1016/j.gene.2003.10.004
  18. Kang, B. R., Han, S. H., Zdor, R. E. Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim. Y. C. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586-593.
  19. Kim, J. S., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014a. The sensor kinase GacS negatively regulates flagellar formation and motility in a biocontrol bacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30:215-219. https://doi.org/10.5423/PPJ.NT.11.2013.0109
  20. Kim, J. S., Kim, Y. H., Park, J. Y., Anderson, A. J. and Kim, Y. C. 2014b. The global regulator GacS regulates biofilm formation in Pseudomonas chlororaphis O6 differently with carbon source. Can. J. Microbiol. 60:133-138. https://doi.org/10.1139/cjm-2013-0736
  21. Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 62:746-751. https://doi.org/10.1007/s00284-010-9779-y
  22. Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W. 2nd, Lim, C. K., Shaffer, B. T., Elbourne, L. D., Stockwell, V. O., Hartney, S. L., Breakwell, K., Henkels, M. D., Tetu, S. G., Rangel, L. I., Kidarsa, T. A., Wilson, N. L., van de Mortel, J. E., Song, C., Blumhagen, R., Radune, D., Hostetler, J. B., Brinkac, L. M., Durkin, A. S., Kluepfel, D. A., Wechter, W. P., Anderson, A. J., Kim, Y. C., Pierson, L. S. 3rd, Pierson, E. A., Lindow, S. E., Kobayashi, D. Y., Raaijmakers, J. M., Weller, D.M., Thomashow, L. S., Allen, A. E. and Paulsen, I. T. 2012.Comparative genomics of plant-associated Pseudomonasspp.: insights into diversity and inheritance of traits involvedin multitrophic interactions. PLoS Genet. 8:e1002784. https://doi.org/10.1371/journal.pgen.1002784
  23. Miller, C. D., Kim, Y. C. and Anderson, A. J. 1997. Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (catC) from Pseudomonas putida. J. Bacteriol. 179:5241-5245. https://doi.org/10.1128/jb.179.16.5241-5245.1997
  24. Oh, S. A., Kim, J. S., Han, S. H., Park, J. Y., Dimkpa, C., Edlund, C., Anderson, A. J. and Kim, Y. C. 2013a. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobium Pseudomonas chlororaphis O6. Can. J. Microbiol. 59:556-562. https://doi.org/10.1139/cjm-2013-0062
  25. Oh, S. A., Kim, J. S., Park, J. Y., Han, S. H., Dimkpa, C., Anderson, A. J. and Kim, Y. C. 2013b. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29:323-329. https://doi.org/10.5423/PPJ.NT.01.2013.0013
  26. Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J. C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
  27. Raaijmakers, J. M., Vlami, M. and de Souza, J. T. 2002. Antibiotic production by bacterial biocontrol agents. Anton. Leeuw. Int. J. G. 81:537-547. https://doi.org/10.1023/A:1020501420831
  28. Selin, C., Fernando, W.G., and de Kievit, T. 2012. The PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in Pseudomonas chlororaphis PA23. Microbiol. 158: 896-907. https://doi.org/10.1099/mic.0.054254-0
  29. Wang, D., Lee, S.H., Seeve, C., Yu, J. M., Pierson, L. S. 3rd, and Pierson, E. A. 2013. Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. MicrobiologyOpen 2:505-524. https://doi.org/10.1002/mbo3.90
  30. Wessel, A. K., Liew, J., Kwon, T., Marcotte, E. M. and Whiteley, M. 2013. Role of Pseuomonas aeruginosa peptidoglycanassociated outer membrane proteins in vesicle formation. J. Bacteriol. 195:213-219. https://doi.org/10.1128/JB.01253-12
  31. Zuccotti, S., Zanardi, D., Rosano, C., Sturla, L., Tonetti, M. and Bolognesi, M. 2001. Kinetic and crystallographic analyses support a sequential-ordered Bi Bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. J. Mol. Biol. 313:831-843. https://doi.org/10.1006/jmbi.2001.5073

Cited by

  1. A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads vol.790, 2016, https://doi.org/10.1016/j.mrfmmm.2016.06.002
  2. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis vol.29, pp.2, 2016, https://doi.org/10.1007/s10534-015-9906-0
  3. Factors Associated with the Occurrence of Fruit Skin Stain during Growing Period in ‘Niitaka’ Pear vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.198
  4. Small RNAs regulate the biocontrol property of fluorescent Pseudomonas strain Psd vol.196, 2017, https://doi.org/10.1016/j.micres.2016.12.006
  5. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137553
  6. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0172
  7. Functional identification of the prnABCD operon and its regulation in Serratia plymuthica vol.102, pp.8, 2018, https://doi.org/10.1007/s00253-018-8857-0