DOI QR코드

DOI QR Code

Analysis on Winter Atmosphereic Variability Related to Arctic Warming

북극 온난화에 따른 겨울철 대기 변동성 분석 연구

  • Kim, Baek-Min (Division of Climate Change, Korea Polar Research Institute) ;
  • Jung, Euihyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lim, Gyu-Ho (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Hyun-Kyung (Climate Prediction Division, Korea Meteorological Administration)
  • 김백민 (극지연구소 극지기후변화연구부) ;
  • 정의현 (서울대학교 지구환경과학부) ;
  • 임규호 (서울대학교 지구환경과학부) ;
  • 김현경 (기상청 예보국)
  • Received : 2013.12.07
  • Accepted : 2013.12.23
  • Published : 2014.06.30

Abstract

The "Barents Oscillation (BO)", first designated by Paul Skeie (2000), is an anomalous recurring atmospheric circulation pattern of high relevance for the climate of the Nordic Seas and Siberia, which is defined as the second Emperical Orthogonal Function (EOF) of monthly winter sea level pressure (SLP) anomalies, where the leading EOF is the Arctic Oscillation (AO). BO, however, did not attracted much interest. In recent two decades, variability of BO tends to increase. In this study, we analyzed the spatio-temporal structures of Atmospheric internal modes such as Arctic Oscillation (AO) and Barents Oscillation (BO) and examined how these are related with Arctic warming in recent decade. We identified various aspects of BO, not dealt in Skeie (2000), such as upper-level circulation and surface characteristics for extended period including recent decade and examined link with other surface variables such as sea-ice and sea surface temperature. From the results, it was shown that the BO showed more regionally confined spatial pattern compared to AO and has intensified during recent decade. The regional dipolelar structure centered at Barents sea and Siberia was revealed in both sea-level pressure and 500 hPa geopotential height. Also, BO showed a stronger link (correlation) with sea-ice and sea surface temperature especially over Barents-Kara seas suggesting it is playing an important role for recent Arctic amplification. BO also showed high correlation with Ural Blocking Index (UBI), which measures seasonal activity of Ural blocking. Since Ural blocking is known as a major component of Eurasian winter monsoon and can be linked to extreme weathers, we suggest deeper understanding of BO can provide a missing link between recent Arctic amplification and increase in extreme weathers in midlatitude in recent decades.

Keywords

References

  1. Bhatt, U. S., and Coauthors, 2010: Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions, 14, 1-20.
  2. Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global and Planet. Change, 68, 149-163. https://doi.org/10.1016/j.gloplacha.2009.04.001
  3. Cohen, J., and M. Barlow, 2005: The NAO, the AO, and global warming: How closely related?. J. Climate, 18, 4498-4513. https://doi.org/10.1175/JCLI3530.1
  4. Cohen, J., M. Barlow, and K. Saito, 2009: Decadal fluctuations in planetary wave forcing modulate global warming in late boreal winter. J. Climate, 22, 4418-4426. https://doi.org/10.1175/2009JCLI2931.1
  5. Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009-2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37.
  6. Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35. doi:10.1029/2007GL031972.
  7. Corbett, J., D. Lack, J. Winebrake, S. Harder, J. Silberman, and M. Gold, 2010: Arctic shipping emissions inventories and future scenarios. Atmos. Chem. Phys., 10, 9689-9704. https://doi.org/10.5194/acp-10-9689-2010
  8. Dee, D., and Coauthors, 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  9. Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333-351. https://doi.org/10.1175/2009JCLI3053.1
  10. Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic seaice extent. Geophys. Res. Lett., 36, L07503.
  11. Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 3282-3299. https://doi.org/10.1175/2010JCLI3010.1
  12. Ghatak, D., A. Frei, G. Gong, J. Stroeve, and D. Robinson, 2010: On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. J. Geophys. Res.: Atmos. (1984-2012), 115.
  13. Graversen, R. G., T. Mauritsen, M. Tjernstrom, E. Kalln, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 53-56. https://doi.org/10.1038/nature06502
  14. Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004.
  15. Holland, M. M., C. M. Bitz, L. Tremblay, and D. A. Bailey, 2008: The role of natural versus forced change in future rapid summer Arctic ice loss. Arctic sea ice decline: observations, projections, mechanisms, and implications, 133-150.
  16. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic seaice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36.
  17. Honda, M., 2009: Influence of low Arctic seaice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36.
  18. Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A, 64.
  19. Jaiser, R., 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A, 64.
  20. Jeong, J. H., and C. H. Ho, 2005: Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32.
  21. Jeong, J. H., C. H. Ho, B. M. Kim, and W. T. Kwon, 2005: Influence of the MaddenJulian Oscillation on wintertime surface air temperature and cold surges in east Asia. J. Geophys. Res.: Atmos. (1984-2012), 110.
  22. Jeong, J. H., B. M. Kim, C. H. Ho, D. Chen, and G. H. Lim, 2006: Stratospheric origin of cold surge occurrence in East Asia. Geophys. Res. Lett., 33.
  23. Jeong, J. H., T. Ou, H. W. Linderholm, B. M. Kim, S. J. Kim, J. S. Kug, and D. Chen, 2011: Recent recovery of the Siberian High intensity. J. Geophys. Res.: Atmos. (1984-2012), 116.
  24. Kinnard, C., C. M. Zdanowicz, D. A. Fisher, E. Isaksson, A. de Vernal, and L. G. Thompson, 2011: Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479, 509-512. https://doi.org/10.1038/nature10581
  25. KMA, 2011: Role of Siberian snow cover on the persistent cold surgeoccurrence in northern winter. Enhancement Project Report, 46 pp.
  26. Kug, J.-S., F.-F. Jin, J. Park, H.-L. Ren, and I.-S. Kang, 2010: A general rule for synoptic-eddy feedback onto low-frequency flow. Clim. Dynam., 35, 1011-1026. https://doi.org/10.1007/s00382-009-0606-8
  27. Levitus, S., G. Matishov, D. Seidov, and I. Smolyar, 2009: Barents Sea multidecadal variability. Geophys. Res. Lett., 36, L19604. https://doi.org/10.1029/2009GL039847
  28. Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci., 109, 4074-4079. https://doi.org/10.1073/pnas.1114910109
  29. Ohashi, M., and H. Tanaka, 2010: Data analysis of recent warming pattern in the Arctic. SOLA, 6, 1-4. https://doi.org/10.2151/sola.2010-001
  30. Overland, J. E., and M. Wang, 2005: The third Arctic climate pattern: 1930s and early 2000s. Geophys. Res. Lett., 32.
  31. Ohashi, M., 2010: Largescale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A, 62, 1-9.
  32. Polyakov, I. V., and Coauthors, 2010: Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr., 40, 2743-2756. https://doi.org/10.1175/2010JPO4339.1
  33. Rayner, N., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.: Atmos. (1984-2012), 108.
  34. Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 2648-2663. https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
  35. Schweiger, A. J., R. W. Lindsay, S. Vavrus, and J. A. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 4799-4810. https://doi.org/10.1175/2008JCLI2156.1
  36. Schweiger, A. J., 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 4799-4810. https://doi.org/10.1175/2008JCLI2156.1
  37. Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334-1337. https://doi.org/10.1038/nature09051
  38. Screen, J. A., 2010: Increasing fallwinter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37.
  39. Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241-264. https://doi.org/10.1007/s10584-005-9017-y
  40. Serreze, M. C., A. Barrett, J. Stroeve, D. Kindig, and M. Holland, 2009: The emergence of surface-based Arctic amplification. The Cryosphere, 3, 11-19. https://doi.org/10.5194/tc-3-11-2009
  41. Shimada, K., and Coauthors, 2006: Pacific ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605.
  42. Skeie, P., 2000: Meridional flow variability over the Nordic seas in the Arctic Oscillation framework. Geophys. Res. Lett., 27, 2569-2572. https://doi.org/10.1029/2000GL011529
  43. Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 4423-4440. https://doi.org/10.1175/JAS3629.1
  44. Thompson, D. W., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: monthto- month variability. J. Climate, 13, 1000-1016. https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
  45. Vavrus, S., D. Waliser, A. Schweiger, and J. Francis, 2009: Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4. Clim. Dynam., 33, 1099-1115. https://doi.org/10.1007/s00382-008-0475-6
  46. Wang, L., W. Chen, W. Zhou, J. C. Chan, D. Barriopedro, and R. Huang, 2010: Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int. J. Climatol., 30, 153-158.
  47. Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701. https://doi.org/10.1029/2008GL035607

Cited by

  1. Characteristic Variations of Upper Jet Stream over North-East Asian Region during the Recent 35 Years (1979~2013) Based on Four Reanalysis Datasets vol.25, pp.2, 2015, https://doi.org/10.14191/Atmos.2015.25.2.235
  2. Changes in weather and climate extremes over Korea and possible causes: A review vol.51, pp.2, 2015, https://doi.org/10.1007/s13143-015-0066-5
  3. Relationship between the East-Asian Cold Anomalies in Winter of 2010/11 and Blocking vol.26, pp.1, 2016, https://doi.org/10.14191/Atmos.2016.26.1.193
  4. The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review vol.53, pp.1, 2017, https://doi.org/10.1007/s13143-017-0008-5