DOI QR코드

DOI QR Code

Characteristics of the Gross Moist Stability in the Tropics and Its Future Change

열대 지역 Gross Moist Stability 특징 분석 및 미래 변화

  • Kim, Hye-Won (Division of Earth Environmental System, Pusan National University) ;
  • Seo, Kyong-Hwan (Department of Atmospheric Sciences, Pusan National University)
  • 김혜원 (부산대학교 지구환경시스템학부) ;
  • 서경환 (부산대학교 대기환경과학과)
  • Received : 2013.12.09
  • Accepted : 2014.01.22
  • Published : 2014.06.30

Abstract

This study investigates the characteristics of the Gross Moist Stability (GMS) over the tropics. The GMS summarizes the relationship between large-scale entropy forcing due to radiation and surface fluxes and the response of smaller-scale convection. The GMS is able to explain both to where moist entropy is advected by the atmospheric circulation and how deep the moisture flux convergence is in the tropical region. In the deep convective region, positive GMS appears over the warm pool region due to the strong column-integrated moisture convergence and the ensuing export of moist entropy to the environment. The vertical advection of moist entropy dominates over the horizontal advection in this region. Meanwhile, over the eastern tropical ITCZ region, which is characterized by shallow convective area, import of moist entropy by horizontal winds is dominant compared to the vertical moist entropy advection. Future changes in the GMS are also examined using the 22 CMIP5 model simulations. A decrease in the GMS appears widely across the tropics, but its increase occurs over the western-central equatorial Pacific. It is evident that the increased GMS region corresponds to an increased region of precipitation, implying that strengthened convection in the future due to increased entropy forcing exports the enhanced moist energy to stabilize the environment.

Keywords

References

  1. Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, doi:10.1029/2006GL026672.
  2. Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. Frierson, 2013: Gross Moist Stability and MJO Simulation Skill in Three Full-physics GCMs. J. Atmos. Sci., submitted.
  3. Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 3803-3822, doi:10.1175/JCLI-D-12-00543.1.
  4. Chou, C., and C.-A. Chen, 2010: Depth of convection and the weakening of tropical circulation in global warming. J. Climate, 23, 3019-3030. https://doi.org/10.1175/2010JCLI3383.1
  5. Chou, C., T.-C. Wu, and P.-H. Tan, 2013: Changes in gross moist stability in the tropics under global warming. Clim. Dynam., 41, 2481-2496. https://doi.org/10.1007/s00382-013-1703-2
  6. Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111-1143, doi:10.1002/qj.49712051902.
  7. Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 1959-1976. https://doi.org/10.1175/JAS3935.1
  8. Liu, Z., S. Vavrus, F. He, N. Wen, and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 4684-4700. https://doi.org/10.1175/JCLI3579.1
  9. Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical australia. J. Atmos. Sci., 51, 3183-3193. https://doi.org/10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2
  10. Madden, R. A., and P. R. Julian, 1972: Description of global- scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123. https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
  11. Raymond, D. J., and Z. Fuchs, 2009: Moisture modes and the Madden-Julian Oscillation. J. Climate, 22, 3031-3046, doi:10.1175/2008JCLI2739.1.
  12. Raymond, D. J., S. L. Sessions, and Z. Fuchs, 2007: A theory for the spinup of tropical depressions. Quart. J. Roy. Meteor. Soc., 133, 1743-1754.
  13. Raymond, D. J., D. J., S. Sessions, A. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. Journal of Advances in Modeling Earth Systems, 1, doi:10.3894/JAMES.2009.1.9.
  14. Seo, K.-H., and S.-W. Son, 2012; The global atmospheric circulation response to tropical diabatic heating associated with the Madden-Julian Oscillation during Northern Winter. J. Atmos. Sci., 69, 79-96. https://doi.org/10.1175/2011JAS3686.1
  15. Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110, 25-35.
  16. Simpson, J., R. F. Adler, and G. R. North, 1988: A Pro posed Tropical Rainfall Measuring Mission (TRMM) Satellite. Bull. Amer. Meteor. Soc., 69, 278-295. https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2
  17. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMSD-11-00094.1.
  18. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17- year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  19. Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 1354-1372. https://doi.org/10.1175/1520-0469(1998)055<1354:ETGMSO>2.0.CO;2
  20. Zhang, C., 2005: Madden-Julian Oscillation, Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.