DOI QR์ฝ”๋“œ

DOI QR Code

ON MINIMAL NON-๐“ ๐“๐‘บ-GROUPS

  • Han, Zhangjia (School of Applied Mathematics Chengdu University of Information Technology) ;
  • Shi, Huaguo (Sichuan Vocational and Technical College) ;
  • Chen, Guiyun (School of Mathematics and Statistics Southwest University)
  • Received : 2013.08.16
  • Published : 2014.07.31

Abstract

A finite group G is called a $\mathcal{QNS}$-group if every minimal subgroup X of G is either quasinormal in G or self-normalizing. In this paper the authors classify the non-$\mathcal{QNS}$-groups whose proper subgroups are all $\mathcal{QNS}$-groups.

Keywords

References

  1. W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), 125-132. https://doi.org/10.1007/BF01111801
  2. K. Doerk, Minimal nicht uberauflosbare endliche Gruppen, Math. Z. 91 (1966), 198-205. https://doi.org/10.1007/BF01312426
  3. D. Gorenstein, Finite Simple Groups, New York, Plenum Press, 1982.
  4. P. Guo and X. Zhang, On minimal non-MSP-groups, Ukrainian Math. J. 63 (2012), no. 9, 1458-1463. https://doi.org/10.1007/s11253-012-0591-7
  5. Z. Han, G. Chen, and H. Shi, On minimal non-NSN-groups, J. Korean Math. Soc. 50 (2013), no. 3, 579-589. https://doi.org/10.4134/JKMS.2013.50.3.579
  6. T. Hawkes, On the automorphism group of a 2-group, Proc. London Math. Soc. 26 (1973), 207-225.
  7. B. Huppert, Endliche Gruppen I, New York, Berlin, Springer-Verlag, 1967.
  8. H. Kurzweil and B. Stellmacher, The Theory of Finite Groups: An Introduction, New York, Springer-Verlag, 2004.
  9. T. J. Laffey, A lemma on finite p-group and some consequences, Proc. Cambridge Philos. Soc. 75 (1974), 133-137. https://doi.org/10.1017/S0305004100048350
  10. G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), no. 4, 398-404. https://doi.org/10.1090/S0002-9947-1903-1500650-9
  11. D. J. S. Robinson, A Course in the Theory of Groups, New York, Springer, 1993.
  12. N. Sastry, On minimal non-PN-groups, J. Algebra 65 (1980), no. 1, 104-109. https://doi.org/10.1016/0021-8693(80)90241-0
  13. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. I, Bull. Amer. Math. Soc. 74 (1968), 383-437. https://doi.org/10.1090/S0002-9904-1968-11953-6
  14. L. Wang, The Influence of Permutable Properties of Subgroups on the Structure of Finite Groups, Doctoral Dissertation of Zhongshan University, 2006.

Cited by

  1. Minimal non-๐’ฌ๐’ฎ-groups pp.1793-6500, 2019, https://doi.org/10.1142/S0218196719500231