DOI QR코드

DOI QR Code

FINITE GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS ARE SB-GROUPS

  • Guo, Pengfei (School of Mathematics and Information Engineering Lianyungang Normal College, Department of Civil and Architectural Engineering City University of Hong Kong) ;
  • Wang, Junxin (Department of Mathematics Shanxi University of Finance and Economics) ;
  • Zhang, Hailiang (Department of Mathematics Zhejiang Ocean University)
  • Received : 2013.09.09
  • Published : 2014.07.31

Abstract

A finite group G is called a SB-group if every subgroup of G is either s-quasinormal or abnormal in G. In this paper, we give a complete classification of those groups which are not SB-groups but all of whose proper subgroups are SB-groups.

Keywords

References

  1. R. K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1975), no. 1, 77-83. https://doi.org/10.1090/S0002-9939-1975-0364444-4
  2. A. Ballester-Bolinches and R. Esteban-Romero, On minimal non-supersoluble groups, Rev. Mat. Iberoamericana 23 (2007), no. 1, 127-142.
  3. A. Ballester-Bolinches, R. Esteban-Romero, and D. J. S. Robinson, On finite minimal non-nilpotent groups, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3455-3462. https://doi.org/10.1090/S0002-9939-05-07996-7
  4. K. Doerk, Minimal nicht uberauflosbare, endliche Gruppen, Math. Z. 91 (1966), 198-205. https://doi.org/10.1007/BF01312426
  5. A. Fattahi, Groups with only normal and abnormal subgroups, J. Algebra 28 (1974), 15-19. https://doi.org/10.1016/0021-8693(74)90019-2
  6. P. F. Guo and X. Y. Guo, On minimal non-MSN-groups, Front. Math. China 6 (2011), no. 5, 847-854. https://doi.org/10.1007/s11464-011-0115-z
  7. X. Y. Guo, K. P. Shum, and A. Ballester-Bolinches, On complemented minimal subgroups in finite groups, J. Group Theory 6 (2003), no. 2, 159-167.
  8. Z. J. Han, G. Y. Chen, and W. Zhou, On minimal non-NSN-groups, J. Korean Math. Soc. 50 (2013), no. 3, 579-589. https://doi.org/10.4134/JKMS.2013.50.3.579
  9. S. R. Li, On minimal non-PE-groups, J. Pure Appl. Algebra 132 (1998), no. 2, 149-158. https://doi.org/10.1016/S0022-4049(97)00106-0
  10. D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
  11. D. J. S. Robinson, Minimality and Sylow-permutability in locally finite groups, Ukrainian Math. J. 54 (2002), no. 6, 1038-1048. https://doi.org/10.1023/A:1021724622826
  12. O. J. Schmidt, Uber Gruppen, deren samtliche Teiler spezielle Gruppen sind, Mat. Sbornik 31 (1924), 366-372.
  13. Z. C. Shen, S. R. Li, and W. J. Shi, Finite groups all of whose second maximal subgroups are PSC-groups, J. Algebra Appl. 8 (2009), no. 2, 229-242. https://doi.org/10.1142/S0219498809003291
  14. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437. https://doi.org/10.1090/S0002-9904-1968-11953-6
  15. M. Y. Xu and Q. H. Zhang, On conjugate-permutable subgroups of a finite group, Algebra Colloq. 12 (2005), no. 4, 669-676. https://doi.org/10.1142/S1005386705000635
  16. Q. H. Zhang, Finite groups with only s-quasinormal and abnormal subgroups, Northeast. Math. J. 14 (1998), no. 1, 41-46.
  17. Q. H. Zhang, s-semipermutability and abnormality in finite groups, Comm. Algebra 27 (1999), no. 9, 4515-4524. https://doi.org/10.1080/00927879908826711
  18. Y. Zhao, A note on the structure of Quasi-Hamilton groups, J. Engineering Math. 9 (1992), no. 4, 119-121.