DOI QR코드

DOI QR Code

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots

  • Mehrabian, Masood (Department of Physics, Amirkabir University of Technology) ;
  • Afarideh, Hossein (Department of Physics, Amirkabir University of Technology) ;
  • Mirabbaszadeh, Kavoos (Department of Physics, Amirkabir University of Technology) ;
  • Lianshan, Li (Laboratory for Nanomaterials, National Center for Nanoscience and Technology) ;
  • Zhiyong, Tang (Laboratory for Nanomaterials, National Center for Nanoscience and Technology)
  • Received : 2014.04.07
  • Accepted : 2014.07.08
  • Published : 2014.08.25

Abstract

Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).

Keywords

References

  1. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295, 2425-2427 (2002). https://doi.org/10.1126/science.1069156
  2. M. Helgesen, R. Sondergaard, and F. C. Krebs, "Advanced materials and processes for polymer solar cell devices," Journal of Materials Chemistry, 20 36-60 (2010). https://doi.org/10.1039/b913168j
  3. K. Kang and J. Kim, "Effect of sunlight polarization on the absorption efficiency of V-shaped organic solar cells," J. Opt. Soc. Korea 18, 9-14 (2014). https://doi.org/10.3807/JOSK.2014.18.1.009
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar Cell Efficiency Tables (version 39), Progress in Photovoltaics: Research and Applications 20, 12-20 (2012). https://doi.org/10.1002/pip.2163
  5. H. Fu, M. Choi, W. Luan, Y. S. Kim, and S. T. Tu, "Hybrid solar cells with an inverted structure: Nanodots incorporated ternary system," Solid-State Electronics 69, 50-54 (2012). https://doi.org/10.1016/j.sse.2011.12.009
  6. E. C. Garnett and P. D. Yang, "Silicon nanowire radial p-n junction solar cells," Journal of the American Chemical Society 130, 9224-9225 (2008). https://doi.org/10.1021/ja8032907
  7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, "Nanowire dye-sensitized solar cells," Nature Materials 4, 455-459 (2005). https://doi.org/10.1038/nmat1387
  8. M. Zhong, D. Yang, J. Zhang, J. Y. Shi, X. L. Wang, and C. Li, "Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification," Solar Energy Materials and Solar Cells 96, 160-165 (2012). https://doi.org/10.1016/j.solmat.2011.09.041
  9. Y. Myung, J. H. Kang, J. W. Choi, D. M. Jang, and J. Park, "Polytypic ZnCdSe shell layer on a ZnO nanowire array for enhanced solar cell efficiency," Journal of Materials Chemistry 22, 2157-2165 (2012). https://doi.org/10.1039/c1jm15003k
  10. K. Sayama, H. Sugihara, and H. Arakawa, "Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye," Chemistry of Materials 10, 3825- 3832 (1998). https://doi.org/10.1021/cm980111l
  11. S. Ferrere, A. Zaban, and B. A. Gregg, "Dye sensitization of nanocrystalline tin oxide by perylene derivatives," Journal of Physical Chemistry B 101, 4490-4493 (1997). https://doi.org/10.1021/jp970683d
  12. K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, "Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes," Langmuir 16, 4688-4694 (2000). https://doi.org/10.1021/la9912702
  13. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, "Controlled growth of ZnO nanowires and their optical properties," Adv. Funct. Mater. 12, 323-331 (2002). https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  14. J. B. Xia and X. W. Zhang, "Electronic structure of ZnO Wurtzite quantum wires," Eur. Phys. J. B 49, 415-420 (2006). https://doi.org/10.1140/epjb/e2006-00093-1
  15. S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci. Technol. Adv. Mater. 10, 013001- 013018 (2009). https://doi.org/10.1088/1468-6996/10/1/013001
  16. W. I. Park and G. C. Yi, "Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN," Adv. Mater. 16, 87-90 (2004). https://doi.org/10.1002/adma.200305729
  17. L. M. Li, Z. F. Du, C. C. Li, J. Zhang, and T. H. Wang, "Ultralow threshold field emission from ZnO nanorod arrays grown on ZnO film at low temperature," Nanotechnology 18, 355606 (2007). https://doi.org/10.1088/0957-4484/18/35/355606
  18. A. M. Lockett, P. J. Thomas, and P. O'Brien, "Influence of seeding layers on the morphology, density, and critical dimensions of ZnO nanostructures grown by chemical bath deposition," Journal of Physical Chemistry C 116, 8089- 8094 (2012). https://doi.org/10.1021/jp211121d
  19. J. P. Liu, X. T. Huang, Y. Y. Li, X. X. Ji, Z. K. Li, X. He, and F. L. Sun, "Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: Direct solution synthesis, photoluminescence, and field emission," Journal of Physical Chemistry C 111, 4990-4997 (2007).
  20. L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions," Adv. Mater. 15, 464-466 (2003). https://doi.org/10.1002/adma.200390108
  21. L. Y. Chen, Y. T. Yin, C.H. Chen, and J. W. Chiou, "Influence of polyethyleneimine and ammonium on the growth of ZnO nanowires by hydrothermal method," Journal of Physical Chemistry C 115, 20913-20919 (2011). https://doi.org/10.1021/jp2056199
  22. J.-S. Huang and C. F. Lin, "Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing," J. Appl. Phys. 103, 1-5 (2008).
  23. M. F. Malek, M. Z. Sahdan, M. H. Mamat, M. Z. Musa, Z. Khusaimi, S. S. Husairi, N. D. Md Sin, and M. Rusop, "A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells," Applied Surface Science 275, 75-83 (2013). https://doi.org/10.1016/j.apsusc.2013.01.119
  24. D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, "Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices," J. Phys. Chem. C 111, 16640-16645 (2007). https://doi.org/10.1021/jp0757816
  25. K. Takanezawa, K. Tajima, and K. Hashimoto, "Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer," Appl. Phys. Lett. 93, 1-3 (2008).
  26. D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, "Hybrid photovoltaic devices of polymer and ZnO nanofiber composites," Thin Solid Films 496, 26-29 (2006). https://doi.org/10.1016/j.tsf.2005.08.179
  27. A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, "Hybrid polymer/metal oxide solar cells based on ZnO columnar structures," J. Mater. Chem. 16, 2088-2096 (2006). https://doi.org/10.1039/b602084d
  28. S. Sun and N. S. Sariciftci, Organic Photovoltaics (Taylor & Francis, London, UK, 2005).
  29. C. J. Brabec, V. Dyakonov, J. Parisi, and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization (Springer Verlag, Heidelberg, 2003).
  30. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science 258, 1474-1476 (1992). https://doi.org/10.1126/science.258.5087.1474
  31. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor acceptor heterojunctions," Science 270, 1789-1791 (1995). https://doi.org/10.1126/science.270.5243.1789
  32. D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, "Temperature dependent characteristics of poly (3 hexylthiophene)-fullerene based heterojunction organic solar cells," J. Appl. Phys. 93, 3376- 3383 (2002).
  33. D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, "Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites," Nanotechnology 15, 1317-1323 (2004). https://doi.org/10.1088/0957-4484/15/9/035
  34. I. Riedel and V. Dyakonov, "Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices," Phys. Stat. Sol. (a) 201, 1332-1341 (2004). https://doi.org/10.1002/pssa.200404333
  35. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nature Materials 4, 864-868 (2005). https://doi.org/10.1038/nmat1500
  36. H. Sirringhaus, N. Tessler, and R. H. Friend, "Integrated optoelectronic devices based on conjugated polymers," Science 280, 1741-1744 (1998). https://doi.org/10.1126/science.280.5370.1741
  37. S. K. Dixit, S. Madan, D. Madhwal, J. Kumar, I. Singh, C. S. Bhatia, P. K. Bhatnagar, and P. C. Mathur, "Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT: CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell," Organic Electronics 13, 710-714 (2012). https://doi.org/10.1016/j.orgel.2012.01.014
  38. D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, "Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices," J. Phys. Chem. C 111, 16640-16645 (2007). https://doi.org/10.1021/jp0757816
  39. Y. Hames, Z. Alpaslan, A. Kosemen, S. E. San, and Y. Yerli, "Electrochemically grown ZnO nanorods for hybrid solar cell applications," Solar Energy 84, 426-431 (2010). https://doi.org/10.1016/j.solener.2009.12.013
  40. M. Akhlaghi, F. Emami, M. S. Sadeghi, and M. Yazdanypoor, "Simulation and optimization of nonperiodic plasmonic nano-particles," J. Opt. Soc. Korea 18, 82-88 (2014). https://doi.org/10.3807/JOSK.2014.18.1.082
  41. L. W. Chong, H. T. Chien, and Y. L. Lee, "Assembly of CdSe onto mesoporous $TiO_{2}$ films induced by a selfassembled monolayer for quantum dot-sensitized solar cell applications," Journal of Power Sources 195, 5109-5113 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.044
  42. D. Denzler, M. Olschewski, and K. Sattler, "Luminescence studies of localized gap states in colloidal ZnS nanocrystals," J. Appl. Phys. 84, 2841-2845 (1998). https://doi.org/10.1063/1.368425
  43. T. B. Nasr, N. Kamoun, and C. Guasch, "Structure, surface composition, and electronic properties of Zinc sulphide thin films," Materials Chemistry and Physics 96, 84-89 (2006). https://doi.org/10.1016/j.matchemphys.2005.06.051
  44. S. H. Deulkar, C. H. Bhosale, and M. Sharon, "A comparative study of structural, compositional, thermal and optical properties of non stoichiometric (Zn, Fe) S chalcogenide pellets and thin films," J. Phys. Chem. Solids 65, 1879-1885 (2004). https://doi.org/10.1016/j.jpcs.2004.06.012
  45. J. Vidal, O. de Melo, O. Vigil, N. Lopez, G. Contreras- Puente, and O. Zelaya-Angel, "Influence of magnetic field and type of substrate on the growth of ZnS films by chemical bath," Thin Solid Films 419, 118-123 (2002). https://doi.org/10.1016/S0040-6090(02)00767-8
  46. B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, and J. C. Bernede, "Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis," Mater. Chem. Phys. 68, 175-179 (2001). https://doi.org/10.1016/S0254-0584(00)00351-5
  47. X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, "ZnO nanoparticulate thin film: Preparation, characterization and gas-sensing property," Sens. Actuators B 102, 248-252 (2004). https://doi.org/10.1016/j.snb.2004.04.080
  48. J. H. Park, J. S. Kim, and J. T. Kim, "Luminescent properties of $BaSi_{2}O_{5}:Eu^{2+}$ phosphor film fabricated by spin-coating of Ba-Eu precursor on $SiO_{2}$ glass," J. Opt. Soc. Korea 18, 45-49 (2014). https://doi.org/10.3807/JOSK.2014.18.1.045
  49. O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, "Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria," J. Phys. D: Appl. Phys. ,42, 225305 (10pp) (2009). https://doi.org/10.1088/0022-3727/42/22/225305
  50. S. H. Im, H. J. Kim, and S. I. Seok, "Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method," Nanotechnology 22, 395502 (5pp) (2011). https://doi.org/10.1088/0957-4484/22/39/395502
  51. Z. Chen and L. Gao, "A facile route to ZnO nanorod arrays using wet chemical method," Journal of Crystal Growth 293, 522-527 (2006). https://doi.org/10.1016/j.jcrysgro.2006.05.082
  52. Q. C. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, "Fabrication of ZnO nanorods and nanotubes in aqueous solutions," Chem. Mater. 17, 1001-1006 (2005). https://doi.org/10.1021/cm048144q
  53. S. Hullavarad, N. Hullavarad, D. Look, and B. Claflin, "Persistent photoconductivity studies in nanostructured ZnO UV sensors," Nanoscale Res. Lett. 4, 1421-1427 (2009). https://doi.org/10.1007/s11671-009-9414-7
  54. Z. L. Wang, X. Y. Kong, and J. M. Zuo, "Induced growth of asymmetric nanocantilever arrays on polar surfaces," Phys. Rev. Lett. 91, 185502 (4 pp) (2003). https://doi.org/10.1103/PhysRevLett.91.185502
  55. L. Zhang, D. Qin, G. Yang, and Q. Zhang, "The investigation on synthesis and optical properties of zns:co nanocrystals by using hydrothermal method," Chalcogenide Letters 9, 93-98 (2012).
  56. A. M. Palve and S. S. Garje, "A facile synthesis of ZnS nanocrystallites by pyrolysis of single molecule precursors, Zn $(cinnamtscz)_{2}$ and $ZnCl_{2}$ $(cinnamtsczH)_{2}$," Bull. Mater. Sci. 34, 667-671 (2011). https://doi.org/10.1007/s12034-011-0179-0
  57. B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, "Valence band alignment at cadmium selenide quantum dot and Zinc oxide (1010) interfaces," J. Phys. Chem. C 112, 8419-8423 (2008). https://doi.org/10.1021/jp7113434
  58. S. K. Dixit, S. Madan, D. Madhwal, J. Kumar, I. Singh, C. S. Bhatia, P. K. Bhatnagar, and P. C. Mathur, "Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT: CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell," Organic Electronics 13, 710-714 (2012). https://doi.org/10.1016/j.orgel.2012.01.014
  59. D. C. Lim, W. H. Shim, K. D. Kim, H. O. Seo, J. H. Lim, Y. Jeong, Y. D. Kim, and K. Lee, "Spontaneous formation of nanoripples on the surface of ZnO thin films as holeblocking layer of inverted organic solar cells," Solar Energy Materials & Solar Cells 95, 3036-3040 (2011).
  60. M. Futsuhara, K. Yoshioka, and O. Takai, "Optical properties of Zinc oxynitride thin films Thin Solid Films 317, 322-325 (1998). https://doi.org/10.1016/S0040-6090(97)00646-9
  61. D. Li and H. Haneda, "Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition," J. Photochem. Photobiol. A Chem. 155, 171-178 (2003). https://doi.org/10.1016/S1010-6030(02)00371-4
  62. J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," Physica Status Solidi (b) 15, 627-637 (1996).
  63. E. A. Davis and N. F. Motta, "Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors," Philosophical Magazine 22, 903-922 (1970). https://doi.org/10.1080/14786437008221061
  64. Y. M. Shen, C. S. Chen, P. C. Yang, S. Y. Ma, and C. F. Lin, "Improvement of surface morphology of thin films and performance by applying electric field on P3HT: PCBM based solar cells," Solar Energy Materials & Solar Cells 99, 263-267 (2012). https://doi.org/10.1016/j.solmat.2011.12.008
  65. S. Cook, R. Katoh, and A. Furube, "Ultrafast studies of charge generation in PCBM: P3HT blend films following excitation of the fullerene PCBM," J. Phys. Chem. C 113, 2547-2552 (2009). https://doi.org/10.1021/jp8050774
  66. D. Yun, X. Xia, S. Zhang, Z. Bian, R. Liu, and C. Huang, "ZnO nanorod arrays with different densities in hybrid photovoltaic devices: Fabrication and the density effect on performance," Chemical Physics Letters 516, 92-95 (2011). https://doi.org/10.1016/j.cplett.2011.09.064

Cited by

  1. Constructing PbS quantum dot sensitized ZnO nanorod array photoelectrodes for highly efficient photovoltaic devices vol.94, pp.7, 2016, https://doi.org/10.1139/cjp-2016-0142
  2. Modeling and simulation of experimentally fabricated QDSSC using ZnS as light absorbing and blocking layer vol.72, pp.4, 2017, https://doi.org/10.3103/S0027134917040099