DOI QR코드

DOI QR Code

Advances in the Early Detection of Lung Cancer using Analysis of Volatile Organic Compounds: From Imaging to Sensors

  • Li, Wang (Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University) ;
  • Liu, Hong-Ying (Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University) ;
  • Jia, Zi-Ru (Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University) ;
  • Qiao, Pan-Pan (Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University) ;
  • Pi, Xi-Tian (Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University) ;
  • Chen, Jun (Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University) ;
  • Deng, Lin-Hong (Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University)
  • Published : 2014.06.15

Abstract

According to the World Health Organization (WHO), 1.37 million people died of lung cancer all around the world in 2008, occupying the first place in all cancer-related deaths. However, this number might be decreased if patients were detected earlier and treated appropriately. Unfortunately, traditional imaging techniques are not sufficiently satisfactory for early detection of lung cancer because of limitations. As one alternative, breath volatile organic compounds (VOCs) may reflect the biochemical status of the body and provide clues to some diseases including lung cancer at early stage. Early detection of lung cancer based on breath analysis is becoming more and more valued because it is non-invasive, sensitive, inexpensive and simple. In this review article, we analyze the limitations of traditional imaging techniques in the early detection of lung cancer, illustrate possible mechanisms of the production of VOCs in cancerous cells, present evidence that supports the detection of such disease using breath analysis, and summarize the advances in the study of E-noses based on gas sensitive sensors. In conclusion, the analysis of breath VOCs is a better choice for the early detection of lung cancer compared to imaging techniques. We recommend a more comprehensive technique that integrates the analysis of VOCs and non-VOCs in breath. In addition, VOCs in urine may also be a trend in research on the early detection of lung cancer.

Keywords

References

  1. Aberle DR, Adams AM, Berg CD, et al (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 365, 395-409. https://doi.org/10.1056/NEJMoa1102873
  2. Aksenov AA, Gojova A, Zhao W, et al (2012). Characterization of volatile organic compounds in human leukocyte antigen heterologous expression systems: a cell's “chemical odor fingerprint”. Chembiochem, 13, 1053-9. https://doi.org/10.1002/cbic.201200011
  3. Albert KJ, Lewis NS, Schauer CL, et al (2000). Cross-reactive chemical sensor arrays. Chem Rev, 100, 2595-626. https://doi.org/10.1021/cr980102w
  4. Barash O, Peled N, Hirsch FR, Haick H (2009). Sniffing the unique “odor print” of non small cell lung cancer with gold nanoparticles. Small, 5, 2618-24. https://doi.org/10.1002/smll.200900937
  5. Barash O, Peled N, Tisch U, et al (2012). Classification of lung cancer histology by gold nanoparticle sensors. Nanomedicine, 8, 580-9. https://doi.org/10.1016/j.nano.2011.10.001
  6. Belinsky SA, Klinge DM, Dekker JD, et al (2005). Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin Cancer Res, 11, 6505-11. https://doi.org/10.1158/1078-0432.CCR-05-0625
  7. Boedeker E, Friedel G, Walles T (2012). Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening. Interact Cardiovasc Thorac Surg, 14, 511-5. https://doi.org/10.1093/icvts/ivr070
  8. Brett GZ (1968). The value of lung cancer detection by six-monthly chest radiographs. Thorax, 23, 414-20. https://doi.org/10.1136/thx.23.4.414
  9. Brosseau C, Boulic F, Queffelec P (1997). Dielectric and microstructure properties of polymer carbon black composites. J Appl Phys, 81, 882-91. https://doi.org/10.1063/1.364173
  10. Castro M, Kumar B, Feller JF (2011). Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens Actuators B: Chemical, 159, 213-9. https://doi.org/10.1016/j.snb.2011.06.073
  11. Chen X, Cao MF, Li Y (2005). A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas Sci Technol, 16, 1535-46. https://doi.org/10.1088/0957-0233/16/8/001
  12. Chow KK, Short M, Zeng H (2012). A comparison of spectroscopic techniques for human breath analysis. Biomedical Spectroscopy Imaging, 1, 339-53.
  13. Chung-man Ho J, Zheng S, Comhair SA, et al (2001). Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res, 61, 8578-85.
  14. D'Amico A, Pennazza G, Santonico M, et al (2010). An investigation on electronic nose diagnosis of lung cancer. Lung Cancer, 68, 170-6. https://doi.org/10.1016/j.lungcan.2009.11.003
  15. De Wever W, Ceyssens S, Mortelmans L, et al (2007). Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol, 17, 23-32. https://doi.org/10.1007/s00330-006-0284-4
  16. Detterbeck FC, DeCamp MM Jr, Kohman LJ, Silvestri GA (2003). Lung cancer. Invasive staging: the guidelines. Chest, 123, 167-75. https://doi.org/10.1378/chest.123.1_suppl.167S
  17. Di Natale C, Macagnano A, Martinelli E, et al (2003). Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron, 18, 1209-18. https://doi.org/10.1016/S0956-5663(03)00086-1
  18. Doria-Rose VP, Marcus PM (2009). Death certificates provide an adequate source of cause of death information when evaluating lung cancer mortality: An example from the Mayo Lung Project. Lung Cancer, 63, 295-300. https://doi.org/10.1016/j.lungcan.2008.05.019
  19. Doria-Rose VP, Marcus PM, Szabo E, et al (2009). Randomized controlled trials of the efficacy of lung cancer screening by sputum cytology revisited a combined mortality analysis from the Johns Hopkins Lung Project and the Memorial Sloan-Kettering Lung Study. Cancer, 115, 5007-17. https://doi.org/10.1002/cncr.24545
  20. Ehmann R, Boedeker E, Friedrich U, et al (2012). Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J, 39, 669-76. https://doi.org/10.1183/09031936.00051711
  21. Ferlay J, Shin HR, Bray F, et al (2010). GLOBOCAN 2008, Cancer incidence and mortality worldwide: IARC CancerBase No. 10. 2010 [Internet]: Lyon, France: International Agency for Research on Cancer.
  22. Field JK, Smith RA, Aberle DR, et al (2012). International Association for the Study of Lung Cancer Computed Tomography Screening Workshop 2011 report. J Thorac Oncol, 7, 10-9. https://doi.org/10.1097/JTO.0b013e31823c58ab
  23. Flehinger BJ, Melamed MR, Zaman MB, et al (1984). Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Memorial Sloan-Kettering study. Am Rev Respir Dis, 130, 555-60.
  24. Fontana RS, Sanderson DR, Taylor WF, et al (1984). Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Mayo Clinic study. Am Rev Respir Dis, 130, 561-5.
  25. Fontana RS, Sanderson DR, Woolner LB, et al (1986). Lung-Cancer Screening - the Mayo Program. J Occup Med, 28, 746-50. https://doi.org/10.1097/00043764-198608000-00038
  26. Fossella F, Komaki R, Putnam J (2003). Lung Cancer. MD Anderson Cancer Care Series. New York, NY Springer-Verlag.
  27. Frost JK, Ball WC Jr, Levin ML, et al (1984). Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am Rev Respir Dis, 130, 549-54.
  28. Ghosal R, Kloer P, Lewis KE (2009). A review of novel biological tools used in screening for the early detection of lung cancer. Postgrad Med J, 85, 358-63. https://doi.org/10.1136/pgmj.2008.076307
  29. Gordon SM, Szidon JP, Krotoszynski BK, et al (1985). Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem, 31, 1278-82.
  30. Hakim M, Broza YY, Barash O, et al (2012). Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev, 112, 5949-66. https://doi.org/10.1021/cr300174a
  31. Halliwell B (1996). Antioxidants in human health and disease. Annu Rev Nutr, 16, 33-50. https://doi.org/10.1146/annurev.nu.16.070196.000341
  32. Hanai Y, Shimono K, Matsumura K, et al (2012). Urinary volatile compounds as biomarkers for lung cancer. Biosci Biotechnol Biochem, 76, 679-84. https://doi.org/10.1271/bbb.110760
  33. Hardie DG, Hawley SA, Scott JW (2006). AMP-activated protein kinase--development of the energy sensor concept. J Physiol, 574, 7-15. https://doi.org/10.1113/jphysiol.2006.108944
  34. Hochhegger B, Marchiori EIrion K (2013). MRI in lymph node staging of lung cancer. AJR Am J Roentgenol, 200, 540. https://doi.org/10.2214/AJR.12.9973
  35. Holty JE, Kuschner WG, Gould MK (2005). Accuracy of transbronchial needle aspiration for mediastinal staging of non-small cell lung cancer: a meta-analysis. Thorax, 60, 949-55. https://doi.org/10.1136/thx.2005.041525
  36. Hou C, Dong J, Zhang G, et al (2011). Colorimetric artificial tongue for protein identification. Biosens Bioelectron, 26, 3981-6. https://doi.org/10.1016/j.bios.2010.11.025
  37. Hou C, Lei J, Huo D (2013). Discrimination of Lung Cancer Related Volatile Organic Compounds with a Colorimetric Sensor Array. Anal Lett, 46, 2048-59. https://doi.org/10.1080/00032719.2013.782550
  38. Hujala KT, Sipila JI, Grenman R (2001). Mediastinoscopy--its role and value today in the differential diagnosis of mediastinal pathology. Acta Oncol, 40, 79-82. https://doi.org/10.1080/028418601750071109
  39. Janzen MC, Ponder JB, Bailey DP, et al (2006). Colorimetric sensor arrays for volatile organic compounds. Anal Chem, 78, 3591-600. https://doi.org/10.1021/ac052111s
  40. Karki S, Yin Yj, Samanai N et al (2013). Breathe analyzer and its importance for the early detection of lung cancer. Sky J Med Med Sci, 1, 7-9.
  41. Kneepkens CM, Lepage G, Roy CC (1994). The potential of the hydrocarbon breath test as a measure of lipid-peroxidation. Free Radic Biol Med, 17, 127-60. https://doi.org/10.1016/0891-5849(94)90110-4
  42. Kubik A, Polak J (1986). Lung cancer detection. Results of a randomized prospective study in Czechoslovakia. Cancer, 57, 2427-37. https://doi.org/10.1002/1097-0142(19860615)57:12<2427::AID-CNCR2820571230>3.0.CO;2-M
  43. Leng S, Do K, Yingling CM, et al (2012). Defining a gene promoter methylation signature in sputum for lung cancer risk assessment. Clin Cancer Res, 18, 3387-95. https://doi.org/10.1158/1078-0432.CCR-11-3049
  44. Marcus PM, Bergstralh EJ, Fagerstrom RM, et al (2000). Lung cancer mortality in the Mayo Lung Project: impact of extended follow-up. J Natl Cancer Inst, 92, 1308-16. https://doi.org/10.1093/jnci/92.16.1308
  45. Marnett LJ (2000). Oxyradicals and DNA damage. Carcinogenesis, 21, 361-70. https://doi.org/10.1093/carcin/21.3.361
  46. Mazzone PJ (2008). Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer. J Thorac Oncol, 3, 774-80. https://doi.org/10.1097/JTO.0b013e31817c7439
  47. Mazzone PJ, Hammel J, Dweik R, et al (2007). Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax, 62, 565-8. https://doi.org/10.1136/thx.2006.072892
  48. Mazzone PJ, Obuchowski N, Phillips M, et al (2013). Lung cancer screening with computer aided detection chest radiography: design and results of a randomized, controlled trial. PLOS ONE, 8, 59650. https://doi.org/10.1371/journal.pone.0059650
  49. Mazzone PJ, Wang XF, Xu Y, et al (2012). Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J Thorac Oncol, 7, 137-42. https://doi.org/10.1097/JTO.0b013e318233d80f
  50. McCulloch M, Jezierski T, Broffman M, et al (2006). Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther, 5, 30-9. https://doi.org/10.1177/1534735405285096
  51. McWilliams A, Mayo J, MacDonald S, et al (2003). Lung Cancer Screening A Different Paradigm. Am J Respir Crit Care Med, 168, 1167-73. https://doi.org/10.1164/rccm.200301-144OC
  52. Melamed MR, Flehinger BJ, Zaman MB, et al (1984). Screening for early lung cancer. Results of the Memorial Sloan-Kettering study in New York. Chest, 86, 44-53.
  53. Miyazu YM, Miyazawa T, Hiyama K, et al (2005). Telomerase expression in noncancerous bronchial epithelia is a possible marker of early development of lung cancer. Cancer Res, 65, 9623-7. https://doi.org/10.1158/0008-5472.CAN-05-0976
  54. Moser E, McCulloch M (2010). Canine scent detection of human cancers: A review of methods and accuracy. J Vet Behav, 5, 145-52. https://doi.org/10.1016/j.jveb.2010.01.002
  55. Muro ML, Daws CA, Castellano FN (2008). Microarray pattern recognition based on Pt(II) terpyridyl chloride complexes: vapochromic and vapoluminescent response. Chem Commun, 14, 6134-6.
  56. Oken MM, Hocking WG, Kvale PA, et al (2011). Screening by Chest Radiograph and Lung Cancer Mortality The Prostate, Lung, Colorectal, and Ovarian (PLCO) Randomized Trial. JAMA, 306, 1865-73. https://doi.org/10.1001/jama.2011.1591
  57. Pauling L, Robinson AB, Teranishi R, Cary P (1971). Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA, 68, 2374-6. https://doi.org/10.1073/pnas.68.10.2374
  58. Peled N, Barash O, Tisch U, et al (2013). Volatile fingerprints of cancer specific genetic mutations. Nanomed Nanotechnol, 9, 758-66. https://doi.org/10.1016/j.nano.2013.01.008
  59. Peng G, Hakim M, Broza YY, et al (2010). Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer, 103, 542-51. https://doi.org/10.1038/sj.bjc.6605810
  60. Peng G, Tisch U, Adams O, et al (2009). Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol, 4, 669-73. https://doi.org/10.1038/nnano.2009.235
  61. Phillips M, Altorki N, Austin JHM (2007). Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark, 3, 95-109.
  62. Phillips M, Cataneo RN, Cummin AR, et al (2003). Detection of lung cancer with volatile markers in the breath. Chest, 123, 2115-23. https://doi.org/10.1378/chest.123.6.2115
  63. Phillips M, Gleeson K, Hughes JM, et al (1999). Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet, 353, 1930-3. https://doi.org/10.1016/S0140-6736(98)07552-7
  64. Phillips M, Herrera J, Krishnan S, et al (1999). Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl, 729, 75-88. https://doi.org/10.1016/S0378-4347(99)00127-9
  65. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004). Oxidative stress and cell signalling. Curr Med Chem, 11, 1163-82. https://doi.org/10.2174/0929867043365323
  66. Poyton RO, Ball KA, Castello PR (2009). Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab, 20, 332-40. https://doi.org/10.1016/j.tem.2009.04.001
  67. Pysanenko A, Span.l P, Smith D (2008). A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry. J Breath Res, 2, 046004. https://doi.org/10.1088/1752-7155/2/4/046004
  68. Rami Porta R (1999). Surgical exploration of the mediastinum by mediastinoscopy, parasternal mediastinotomy and remediastinoscopy: indications, technique and complications. Ann Ital Chir, 70, 867-72.
  69. Ramshankar V, Krishnamurthy A (2013). Lung cancer detection by screening - presenting circulating miRNAs as a promising next generation biomarker breakthrough. Asian Pac J Cancer Prev, 14, 2167-72. https://doi.org/10.7314/APJCP.2013.14.4.2167
  70. Roos PH, Tschirbs S, Pfeifer F, et al (2004). Risk potentials for humans of original and remediated PAH-contaminated soils: application of biomarkers of effect. Toxicology, 205, 181-94. https://doi.org/10.1016/j.tox.2004.06.050
  71. Santonico M, Lucantoni G, Pennazza G, et al (2012). In situ detection Of lung cancer volatile fingerprints using bronchoscopic air-sampling. Lung Cancer, 77, 46-50. https://doi.org/10.1016/j.lungcan.2011.12.010
  72. Sauerbrey G (1959). Use of vibrating quartz for thin film weighing and microweighing. Z Phys, 155, 206-22. https://doi.org/10.1007/BF01337937
  73. Semelka RC, Armao DM, Elias J Jr, Huda W (2007). Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J Magn Reson Imaging, 25, 900-9. https://doi.org/10.1002/jmri.20895
  74. Smith D, Wang T, Sule-Suso J, et al (2003). Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom, 17, 845-50. https://doi.org/10.1002/rcm.984
  75. Sozzi G, Conte D, Leon M, et al (2003). Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol, 21, 3902-8. https://doi.org/10.1200/JCO.2003.02.006
  76. Spiro SG, Navani N (2012). Screening for lung cancer: Is this the way forward? Respirology, 17, 237-46. https://doi.org/10.1111/j.1440-1843.2011.02114.x
  77. Tanaka K, Akechi T, Okuyama T, et al (2002). Prevalence and screening of dyspnea interfering with daily life activities in ambulatory patients with advanced lung cancer. J Pain Symptom Manage, 23, 484-9. https://doi.org/10.1016/S0885-3924(02)00394-9
  78. Tanner NT, Mehta H, Silvestri GA (2012). New testing for lung cancer screening. Oncology, 26, 176-82.
  79. Tisch U, Billan S, Ilouze M (2012). Volatile organic compounds in exhaled breath as biomarkers for the early detection and screening of lung cancer. CML Lung Cancer, 5, 107-17.
  80. Tockman MS, Mulshine JL (1997). Sputum screening by quantitative microscopy: a new dawn for detection of lung cancer? Mayo Clin Proc, 72, 788-90. https://doi.org/10.1016/S0025-6196(11)63601-X
  81. Valko M, Rhodes CJ, Moncol J, et al (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 160, 1-40. https://doi.org/10.1016/j.cbi.2005.12.009
  82. Wang D, Yu K, Wang Y (2012). A hybrid electronic noses'system based on mos-saw detection units intended for lung cancer diagnosis. J Innov Opt Health Sci, 5, 1150006. https://doi.org/10.1142/S1793545811500064
  83. Wang Y, Gu J, Roth JA, et al (2013). Pathway-based serum microRNA profiling and survival in patients with advanced non-small cell lung cancer. Cancer Res, 73, 4801-9. https://doi.org/10.1158/0008-5472.CAN-12-3273
  84. Williams H, Pembroke A (1989). Sniffer dogs in the melanoma clinic? Lancet, 1, 734.
  85. Wilson A D, Baietto M (2009). Applications and advances in electronic-nose technologies. Sensors (Basel), 9, 5099-148. https://doi.org/10.3390/s90705099
  86. Wohltjen H (1984). Mechanism of operation and design considerations for surface acoustic-wave device vapor sensors. Sens Actuators, 5, 307-25. https://doi.org/10.1016/0250-6874(84)85014-3
  87. Xiang D, Zhang B, Doll D, et al (2013). Lung cancer screening: from imaging to biomarker. Biomarker Res, 1, 1-10. https://doi.org/10.1186/2050-7771-1-1
  88. Yang SY, Xiao XY, Zhang WG, et al (2005). Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer, 5, 83. https://doi.org/10.1186/1471-2407-5-83
  89. Yao Q, Sun JG, Ma H, et al (2014). Monitoring microRNAs using a molecular beacon in CD133+/ CD338+ human lung adenocarcinoma-initiating A549 cells. Asian Pac J Cancer Prev, 15, 161-6. https://doi.org/10.7314/APJCP.2014.15.1.161
  90. Yu H, Xu L, Cao MF (2003). Detection volatile organic compounds in breath as markers of lung cancer using a novel electronic nose. Proceedings of the IEEE Sensors, 2, 1333-7.
  91. Zhong D, Guo L, de Aguirre I, et al (2006). LKB1 mutation in large cell carcinoma of the lung. Lung Cancer, 53, 285-94. https://doi.org/10.1016/j.lungcan.2006.05.018

Cited by

  1. Comparative Assessment of the Diagnostic Value of Transbronchial Lung Biopsy and Bronchoalveolar Lavage Fluid Cytology in Lung Cancer vol.16, pp.1, 2015, https://doi.org/10.7314/APJCP.2015.16.1.201
  2. Detection of lung cancer with electronic nose and logistic regression analysis vol.13, pp.1, 2018, https://doi.org/10.1088/1752-7163/aae1b8