Comparison of Nutritional Components and Physicochemical Properties of Small Colored Potatoes and Small Regular Potatoes

칼라꼬마감자와 일반꼬마감자의 영양성분 및 이화학적 특성

  • Park, Sung-Jin (Dept. of Tourism Food Service Cuisine, Hallym Polytechnic University Research Institute of Biomaterial, Hallym Polytechnic University) ;
  • Kwon, Min-Soo (Rokya Agricultural Corp.) ;
  • Shin, Kyung-Yi (Dept. of Food Technology and Services, Eulji Univrsity) ;
  • Rha, Young-Ah (Dept. of Food Technology and Services, Eulji Univrsity)
  • 박성진 (한림성심대학교 관광외식조리과/한림성심대학교 생물소재연구소) ;
  • 권민수 (농업회사법인 록야 주식회사) ;
  • 신경이 (을지대학교 식품산업외식학과) ;
  • 나영아 (을지대학교 식품산업외식학과)
  • Received : 2014.01.23
  • Accepted : 2014.06.10
  • Published : 2014.06.30

Abstract

This study examined the nutritional components and physicochemical properties of small colored potatoes and small regular potatoes as a natural health food source. To accomplish this, the general and antioxidative contents of small colored potatoes and small regular potatoes were measured. Total contents of carbohydrates, crude protein, crude lipid, and ash were 88.1%, 4.9%, 0.9%, and 6.4%, respectively. Small colored potatoes contained 76.5 kcal, while their total dietary fiber was 4.0%. Total proteins consisted of 17 different kinds of amino acids. Regarding their mineral contents, K was the most abundant mineral, followed by P, Mg, and Ca. Total phenol contents of the 70% ethanolic extracts of small colored potatoes were $48.2{\pm}1.2$ mg GAE/g. Total flavonoid contents of the 70% ethanolic extracts were $13.1{\pm}0.3$ mg RE/g. Overall, small colored potatoes had higher amounts of nutrients and physicochemical properties than small regular potatoes. The general nutrients and other antioxidant bioactive materials in small colored potatoes were also potential materials for good health food. It is expected that follow up studies of small colored potatoes through developing processed food and evaluation of their functional properties would provide useful information as a source of functional foods.

본 연구에서는 칼라꼬마감자의 영양성분 등의 품질특성을 분석하였고, 항산화활성 효과를 평가하였다. 칼라꼬마감자 100 g(wet weight basis)중에는 수분 79.7%, 탄수화물 17.9%, 조단백질 1.0%, 조지방 0.1%, 조회분 1.3%가 함유되어 있으며, 탄수화물 중 총 식이섬유소 함량은 11.45%이었다. 총 식이섬유의 함량은 4.0%로 나타났다. 또한 칼라꼬마감자 100 g의 총 열량은 337.3 kcal로 분석되었다. 칼라꼬마감자의 구성아미노산 중 asparagine (1,514.3 mg/100g)과 glutamic acid(1,240.3 mg/100g)함량이 가장 높은 함량을 차지하고 있는 것으로 나타났으며, 무기질 함량은 칼륨이 약 1,454.7 mg으로 가장 함량이 높았으며, 인(245.3 mg), 마그네슘(82.8 mg), 칼슘(62.1 mg)순이었다. 미량영양소인 철분(28.1 mg), 망간(28.1 mg), 구리(3.4 mg) 및 아연(2.5 mg)이 함유되어 있었다. 칼라꼬마감자 추출물의 페놀 함량은 chlorogenic acid가 $3,730.60{\pm}0.62mg/100g$로서 가장 많은 양이 함유 되어 있었고 catechin, caffeic acid, gallic acid의 함량이 높은 것으로 나타났으나, p-coumaric acid, ferulic acid는 확인되지 않았다. 칼라꼬마감자의 우수한 영양성분 및 항산화 활성을 나타내는 성분 및 그 활성에 대한 연구가 추가로 필요할 것으로 생각된다. 칼라꼬마감자의 우수한 생리활성을 나타내는 성분에 대해서는 더욱 연구가 필요할 것으로 사료되며, 이러한 결과로 보아 칼라꼬마감자의 영양성분 및 항산화 활성 천연소재로 이용할 수 있을 것으로 사료된다. 따라서 칼라영양성분 및 항산화감자 추출물 제조시 기능성 향상을 위한 추출공정의 개선 및 최적화 등의 추후 연구가 필요한 것으로 사료된다.

Keywords

References

  1. Ahn GJ (2012). Quality Characteristics of Sulgidduk Prepared with Amount of Purple Sweet-Potato Powder. Korean J Culinary Research 16(1): 127-136.
  2. AOAC (1984a). Official Methods of Analysis. 14th ed., Association of official analytical chemists, Washington, D.C., 878.
  3. AOAC (2000). Official Methods of Analysis. 17th ed., Intl. Association of Official Analytical Communities, Gaithersburg, MD, USA, 1-26 .
  4. Cappuccio FP, MacGregor GA (1991). Does potassium supplementation lower blood pressure? A meta-analysis of published trials. J Hypertens 9(5): 465-473. https://doi.org/10.1097/00004872-199105000-00011
  5. Choi, HD, Lee HC, Kim SS, Kim YS, Lom HT, Ryu GH (2008). Nutrient components and physicochemical propertiesof new domestic potato cultivars. Kor J Food Sci Technol 40(4): 382-388.
  6. Choi KS, Lee HY (1999). Characteristics of useful components in the leaves of Baechohyang (Agastache rugosa, O. Kuntze). J Korean Soc Food Sci Nutr 28(2): 326-322.
  7. Duval B, Shetty K (2001). The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed andise root extract. J Food Biochem 25(5): 361-377. https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  8. Gutfinger T (1981). Polyphenols in olive oils. JAOCS 58(11): 966-967.
  9. Jang HL, Yoon KY (2012). Biological activities and total phenolic content of ethanol extracts of white and flesh-colored Solanum tubersum L. potatoes. J Korean Soc Food Sci Nutr 41(8): 1035-1040. https://doi.org/10.3746/jkfn.2012.41.8.1035
  10. Jang HL, Hong JY, Kim NJ, Kim NH, Shin SR, Yoon KY (2011). Comparision of nutritent components and physicochemical properties of general and colored potato. Kor J Hort Sci Technol 29(2): 144-150.
  11. Jeon TW, Cho YS, Lee SH, Cho SM, Cho HM, Chang KS, Park HJ (2005). Studies on the biological activities and physicochemical characteristics of pigments extracted from Korean purple-fleshed potato. Kor J Food Sci Technol 37(2): 247-254.
  12. Jeong JC, Chang DG, Yoon YH, Park CS, Kim SY (2006). Effect of cultural environments and nitrogen fertilization levels on the antocyanin accumulation of purple-fleshed potato. J Bio-Environ 15(2): 201-210.
  13. Johnson CA (1995). 1995-1996 seed acres reflect more varieties, market, shifts. Valley Potato Grow 61: 13-16
  14. Kolasa KM (1993). The potato and human nutrition. Amer J Potato Res 70(5): 375-384. https://doi.org/10.1007/BF02849118
  15. Mattila P, Hellstrom J (2007). Phenolic acids in potatoes, vegetables and some of their products. J Food Compos Anal 20(3-4): 152-160. https://doi.org/10.1016/j.jfca.2006.05.007
  16. Middleton EJ, Kandaswami C (1994). Potential health promoting properties of citrus flavonoids. Food Technol 48: 115.
  17. Moreno MIN, Isla MIN, Sampietro AR, Vattuone MA (2000). Comparison of the free radical scavenging activity of propolis from several region of Argentiana. J Enthropharmacology 71(1-2): 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  18. Park YM, Kim MH, Yoon HH (2012). Quality characteristics of Sulgidduck added with purple sweet potato. Korean J Culinary Research 18(1): 54-64.
  19. Shakya R, Navarre DA (2006). Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. J Agr Food Chem 54(15): 5253-5260. https://doi.org/10.1021/jf0605300
  20. Song ES, Park SJ, Woo NRA, Won MH, Choi JS, Kim JG, Kang MH (2005). Antioxidant capacity of colored barley extracts by varieties. Kor J Soc Food Sci Nutr 34(10): 1491-1497. https://doi.org/10.3746/jkfn.2005.34.10.1491
  21. Suter PM (1998). Potassium and hypertension. Nutr Rev 56(5): 151-153.
  22. Talley E, Toma R, Orr P (1984). Amino acid composition of freshly harvested and stored potatoes. Am Potato J 61(5): 267-279. https://doi.org/10.1007/BF02854138
  23. Velioglu YS, Mazza G, Gao L, Oomah BD (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agr Food Chem 46(10): 4113-4117. https://doi.org/10.1021/jf9801973
  24. Waldron KW, Parr AJ, Ng A, Ralph J (1996). Cell wall esterified phenolic dimers: Identification and quantification by reverse phase high performance liquid chromatography and diode array detection. Phytochem Anal 7(6): 305-312. https://doi.org/10.1002/(SICI)1099-1565(199611)7:6<305::AID-PCA320>3.0.CO;2-A
  25. Waters Associates (1983). Official Methods of Analysis. In Amino acid system of operators manual of the Waters Associates. Milford, MA, USA. 37.