DOI QR코드

DOI QR Code

Role of NADH: quinone oxidoreductase-1 in the tight junctions of colonic epithelial cells

  • Nam, Seung Taek (Department of Life Science, College of Natural Science, Daejin University) ;
  • Hwang, Jung Hwan (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Dae Hong (Department of Life Science, College of Natural Science, Daejin University) ;
  • Park, Mi Jung (Department of Life Science, College of Natural Science, Daejin University) ;
  • Lee, Ik Hwan (Department of Life Science, College of Natural Science, Daejin University) ;
  • Nam, Hyo Jung (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kang, Jin Ku (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kim, Sung Kuk (Department of Life Science, College of Natural Science, Daejin University) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Chung, Hyo Kyun (Department of Internal Medicine, Chungnam National University) ;
  • Shong, Minho (Department of Internal Medicine, Chungnam National University) ;
  • Lee, Chul-Ho (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Ho (Department of Life Science, College of Natural Science, Daejin University)
  • Received : 2013.08.28
  • Accepted : 2013.12.19
  • Published : 2014.09.30

Abstract

NADH:quinone oxidoreductase 1 (NQO1) is known to be involved in the regulation of energy synthesis and metabolism, and the functional studies of NQO1 have largely focused on metabolic disorders. Here, we show for the first time that compared to NQO1-WT mice, NQO1-KO mice exhibited a marked increase of permeability and spontaneous inflammation in the gut. In the DSS-induced colitis model, NQO1-KO mice showed more severe inflammatory responses than NQO1-WT mice. Interestingly, the transcript levels of claudin and occludin, the major tight junction molecules of gut epithelial cells, were significantly decreased in NQO1-KO mice. The colons of NQO1-KO mice also showed high levels of reactive oxygen species (ROS) and histone deacetylase (HDAC) activity, which are known to affect transcriptional regulation. Taken together, these novel findings indicate that NQO1 contributes to the barrier function of gut epithelial cells by regulating the transcription of tight junction molecules.

Keywords

References

  1. Berger, F., Ramirez-Hernandez, M. H., and Ziegler, M. (2004) The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 29, 111-118. https://doi.org/10.1016/j.tibs.2004.01.007
  2. Pollak, N., Dolle, C., and Ziegler, M. (2007) The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem. J. 402, 205-218. https://doi.org/10.1042/BJ20061638
  3. Jaiswal, A. K. (2000) Regulation of genes encoding NAD(P)H: quinone oxidoreductases. Free Radic. Biol. Med. 29, 254-262. https://doi.org/10.1016/S0891-5849(00)00306-3
  4. Winski, S. L., Koutalos, Y., Bentley, D. L., and Ross, D. (2002) Subcellular localization of NAD(P)H:quinone oxidoreductase 1 in human cancer cells. Cancer Res. 62, 1420-1424.
  5. Hwang, J. H., Kim, D. W., Jo, E. J., Kim, Y. K., Jo, Y. S., Park, J. H., Yoo, S. K., Park, M. K., Kwak, T. H., Kho, Y. L., Han, J., Choi, H. S., Lee, S. H., Kim, J. M., Lee, I., Kyung, T., Jang, C., Chung, J., Kweon, G. R. and Shong, M. (2009) Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes 58, 965-974. https://doi.org/10.2337/db08-1183
  6. Nagumo, Y., Han, J., Bellila, A., Isoda, H., and Tanaka, T. (2008) Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Biochem. Biophys. Res. Commun. 377, 921-925. https://doi.org/10.1016/j.bbrc.2008.10.071
  7. Tokuda, S., Miyazaki, H., Nakajima, K., Yamada, T., and Marunaka, Y. (2010) NaCl flux between apical and basolateral side recruits claudin-1 to tight junction strands and regulates paracellular transport. Biochem. Biophys. Res. Commun. 393, 390-396. https://doi.org/10.1016/j.bbrc.2010.02.002
  8. Denizot, J., Sivignon, A., Barreau, F., Darcha, C., Chan, H. F., Stanners, C. P., Hofman, P., Darfeuille-Michaud, A., and Barnich, N. (2012) Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn's disease patients. Inflamm. Bowel. Dis. 18, 294-304. https://doi.org/10.1002/ibd.21787
  9. Oh, G. S., Kim, H. J., Choi, J. H., Shen, A., Choe, S. K., Karna, A., Lee, S. H., Jo, H. J., Yang, S. H., Kwak, T. H., Lee, C. H., Park, R. and So, H. S. (2014) Pharmacological activation of NQO1 increases NAD levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int. 85, 547-560. https://doi.org/10.1038/ki.2013.330
  10. Su, L., Shen, L., Clayburgh, D. R., Nalle, S. C., Sullivan, E. A., Meddings, J. B., Abraham, C., and Turner, J. R. (2009) Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136, 551-563. https://doi.org/10.1053/j.gastro.2008.10.081
  11. Schnoor, M., Betanzos, A., Weber, D. A., and Parkos, C. A. (2009) Guanylate-binding protein-1 is expressed at tight junctions of intestinal epithelial cells in response to interferon- gamma and regulates barrier function through effects on apoptosis. Immunol. 2, 33-42.
  12. Alscher, K. T., Phang, P. T., McDonald, T. E., and Walley, K. R. (2001) Enteral feeding decreases gut apoptosis, permeability, and lung inflammation during murine endotoxemia. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G569-576. https://doi.org/10.1152/ajpgi.2001.281.2.G569
  13. Pothoulakis, C., Castagliuolo, I., LaMont, J. T., Jaffer, A., O'Keane, J. C., Snider, R. M., and Leeman, S. E. (1994) CP-96,345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proc. Natl. Acad. Sci. U. S. A. 91, 947-951. https://doi.org/10.1073/pnas.91.3.947
  14. Rhee, S. H., Im, E., Riegler, M., Kokkotou, E., O'Brien, M., and Pothoulakis, C. (2005) Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Natl. Acad. Sci. U. S. A. 102, 13610-13615. https://doi.org/10.1073/pnas.0502174102
  15. Sade, H., Holloway, K., Romero, I. A., and Male, D. (2009) Transcriptional control of occludin expression in vascular endothelia: regulation by Sp3 and YY1. Biochim Biophys. Acta 1789, 175-184. https://doi.org/10.1016/j.bbagrm.2009.01.006
  16. Dufresne, J., and Cyr, D. G. (2007) Activation of an SP binding site is crucial for the expression of claudin 1 in rat epididymal principal cells. Biol. Reprod. 76, 825-832. https://doi.org/10.1095/biolreprod.106.057430
  17. Richon, V. M., Sandhoff, T. W., Rifkind, R. A., and Marks, P. A. (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. U. S. A. 97, 10014-10019. https://doi.org/10.1073/pnas.180316197
  18. Richon, V. M., Zhou, X., Rifkind, R. A., and Marks, P. A. (2001) Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol. Dis. 27, 260-264. https://doi.org/10.1006/bcmd.2000.0376
  19. Marks, P. A., Richon, V. M., Breslow, R., and Rifkind, R. A. (2001) Histone deacetylase inhibitors as new cancer drugs. Curr. Opin. Oncol. 13, 477-483. https://doi.org/10.1097/00001622-200111000-00010
  20. Marks, P. A., Richon, V. M., and Rifkind, R. A. (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl. Cancer Inst. 92, 1210-1216. https://doi.org/10.1093/jnci/92.15.1210
  21. Begleiter, A., Hewitt, D., Maksymiuk, A. W., Ross, D. A., and Bird, R. P. (2006) A NAD(P)H:quinone oxidoreductase 1 polymorphism is a risk factor for human colon cancer. Cancer Epidemiol. Biomarkers. Prev. 15, 2422-2426. https://doi.org/10.1158/1055-9965.EPI-06-0661
  22. Palming, J., Sjoholm, K., Jernas, M., Lystig, T. C., Gummesson, A., Romeo, S., Lonn, L., Lonn, M., Carlsson, B., and Carlsson, L. M. (2007) The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J. Clin. Endocrinol. Metab. 92, 2346-2352. https://doi.org/10.1210/jc.2006-2476
  23. Kang, K. A., Zhang, R., Kim, G. Y., Bae, S. C., and Hyun, J. W. (2012) Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol. 33, 403-412. https://doi.org/10.1007/s13277-012-0322-6
  24. Ito, K., Hanazawa, T., Tomita, K., Barnes, P. J., and Adcock, I. M. (2004) Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem. Biophys. Res. Commun. 315, 240-245. https://doi.org/10.1016/j.bbrc.2004.01.046
  25. Rahman, I., Gilmour, P. S., Jimenez, L. A., and MacNee, W. (2002) Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol. Cell. Biochem. 234, 239-248.
  26. Miura, K., Taura, K., Kodama, Y., Schnabl, B., and Brenner, D. A. (2008) Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology 48, 1420-1429. https://doi.org/10.1002/hep.22486
  27. Baumgart, D. C., Olivier, W. A., Reya, T., Peritt, D., Rombeau, J. L., and Carding, S. R. (1998) Mechanisms of intestinal epithelial cell injury and colitis in interleukin 2 (IL2)-deficient mice. Cell Immunol. 187, 52-66. https://doi.org/10.1006/cimm.1998.1307
  28. Nam, H. J., Kang, J. K., Kim, S. K., Ahn, K. J., Seok, H., Park, S. J., Chang, J. S., Pothoulakis, C., Lamont, J. T., and Kim, H. (2012) Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J. Biol. Chem. 285, 32888-32896.

Cited by

  1. Activation of toll like receptor-3 induces corneal epithelial barrier dysfunction vol.461, pp.3, 2015, https://doi.org/10.1016/j.bbrc.2015.04.080
  2. Effects of low doses of Tat-PIM2 protein against hippocampal neuronal cell survival vol.358, pp.1-2, 2015, https://doi.org/10.1016/j.jns.2015.08.1549
  3. Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-κB signaling and protects intestinal epithelial barrier vol.48, pp.7, 2015, https://doi.org/10.5483/BMBRep.2015.48.7.039
  4. Metabolism of F18, a Derivative of Calanolide A, in Human Liver Microsomes and Cytosol vol.8, 2017, https://doi.org/10.3389/fphar.2017.00479
  5. An organic–inorganic nanohybrid of a calix[4]arene based chromogenic chemosensor for simultaneous estimation of ADP and NADH vol.5, pp.127, 2015, https://doi.org/10.1039/C5RA18003A
  6. Inhibition of NAD(P)H:Quinone Oxidoreductase 1 by Dicumarol Reduces Tight Junction in Human Colonic Epithelial Cells vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.531