DOI QR코드

DOI QR Code

엔진베이 환기용 탠덤 이젝터의 1차원 해석모델링 기법 개발

1-D Analysis of Tandem-ejector for the Engine-bay Ventilation

  • Im, Ju Hyun (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Kim, Myung Ho (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Kim, Yeong Ryeon (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Jun, Sang In (Aerospace Engineering Team, Korean Air)
  • 투고 : 2013.12.12
  • 심사 : 2014.07.11
  • 발행 : 2014.08.01

초록

엔진베이의 환기를 위해 Tandem-ejector 개념을 도입하고, 성능 예측을 위해 1차원 모델링을 개발하였다. 모델링에서 주 노즐 제트유동과 주 제트유동에 의해 유도된 2차 유동 및 3차 유동 해석은 등엔 트로피 과정을 가정하고, 혼합 과정 해석은 질량, 운동량, 에너지 보존식에 기반한 검사체적해석 기법을 적용하였다. Tandem-ejector의 혼합유동이 대기로 방출되므로 방출되는 혼합유동의 정압력과 대기압력을 일치하도록 하고, 이러한 경계조건을 만족시키도록 주 노즐 제트유동의 압력손실 모델링을 구성하였다. Tandem-ejector의 1차원 해석을 통해 주 제트 유동의 압력변화에 따른 이젝터 성능 변화를 예측할 수 있었으며, 실 운용조건에서 주 제트유동의 공급압력 기준값 범위를 설정할 수 있었다.

Tandem-ejector has been devised for engine-bay cooling. In this study, 1-D model has been developed to analyze Tandem-ejector. In the model, the primary, the secondary and the tertiary flow conditions have been analyzed with isentropic process. The mixing process has been analyzed with conservation laws based on the control volume analysis. The total pressure loss of the primary flow has been analyzed under the matching condition between the static pressure of Tandem-ejector discharge flow and atmospheric pressure. Consequently, 1-D model can predict Tandem-ejector performance accurately and provide the performance map.

키워드

참고문헌

  1. Toulmay, F., "Internal Aerodynamics of Infrared Suppressor for Helicopter Engines," Journal of American Helicopter Society, Vol. 33, No. 4, pp. 4-14, 1988. https://doi.org/10.4050/JAHS.33.4
  2. Koutmos, P. and Mcquirk, J.J., "Turbofan Forced Mixer/Nozzle Temperature and Flow Field Modeling," International Journal of Heat and Mass Transfer, Vol. 32, No. 6, pp. 1141-1153, 1989. https://doi.org/10.1016/0017-9310(89)90013-6
  3. Elbel, S. and Hrnjak, P., "Ejector Refrigeration : An Overview of Historical and Present Developments with Emphasis on Air Conditioning Applications," Proceedings of the 12th International Refrigeration and Air Conditioning Conference, 2008.
  4. Eames, I.W. and Aphornratana, S., "A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator," International Journal of Refrigeration, Vol. 18, No. 6, pp. 378-386, 1995. https://doi.org/10.1016/0140-7007(95)98160-M
  5. Jegal, S. and Song, S.J., "Humidity Effect on the Hydrogen Re-circulation Ejector Performance," Proceedings of KSME 2008 Spring Annual Meeting, pp. 488-492, 2008.
  6. Bernardi, D., Bozzolo, M., Marsano, F., Tarnowski, O. and Agnew, G., "Ejectors Design in the Rolls-Royce 1MW Hybrid System," ASME GT2005-68085, pp. 41-50, 2005.
  7. Keenan, J.H. and Neumann, E.P., "A Simple Air Ejector," Journal of Applied Mechanics, Vol. 9, A75-A81, 1942.
  8. Keenan, J.H, Neumann, E.P. and Lustwerk, F., "An Investigation of Ejector Design by Analysis and Experiment," Journal of Applied Mechanics, Vol. 17, pp. 299-309, 1950.
  9. Huang, B.J., Chang, J.M., Wang, C.P. and Petrenko, V.A., "A 1-D Analysis of Ejector Performance," International Journal of Refrigeration, Vol. 22, pp. 354-364, 1999. https://doi.org/10.1016/S0140-7007(99)00004-3
  10. Fabri, J. and Siestrunck, R., Supersonic air ejectors in Advances in Applied Mechanics, Academic Press Inc., New York, N.Y., U.S.A., 1958.
  11. Fabri, J. and Paulon, J., "Theory and Experiments on Supersonic Air-to-air Ejectors," NACA T.M. 1410, 1958.
  12. Presz, W.M. and Greitzer, E.M., "A Useful Similarity Principle for Jet Engine Exhaust System Performance," Proceedings of 24th ASME, SAE, and ASEE Joint Propulsion Conference, 1988.
  13. Munday, J.T. and Bagster, D.F., "A New Ejector Theory Applied to Steam Jet Refrigeration," Industrial and Engineering Chemistry Process Design and Development, Vol. 16, No. 4, pp. 442-449, 1977. https://doi.org/10.1021/i260064a003
  14. White, F.M, Fluid Mechanics, 6th ed., McGraw-Hill, New York, N.Y., U.S.A., 2008.