DOI QR코드

DOI QR Code

Implementation of Efficient Cable Spreading Algorithm and Automation Program for Electrical Equipment in Power Plant

발전소 전기설비를 위한 효과적인 케이블 포설 알고리즘 및 자동화 프로그램 구현

  • Park, Ki-Hong (Divison of Convergence Computer & Media, Mokwon University) ;
  • Kang, An Na (Department of Multimedia Engineering, Dongguk University) ;
  • Choi, Hyo Beom (Wonwoo Engineering Co., Ltd.) ;
  • Lee, Yang Sun (Divison of Convergence Computer & Media, Mokwon University)
  • Received : 2014.07.10
  • Accepted : 2014.08.21
  • Published : 2014.09.30

Abstract

In this paper, we proposed and implemented the automated cable-spreading program which can be done effectively cabling plan for electrical equipment in power plant. Cause the process of existing cable-spreading design was written in by hand, there are grossly inefficient gain by a personal and time investment with cable omission and unfixed overfill value. Proposed automation program for cable-spreading, which is coded cable and raceway, can calculate the overfill value and raceway change. Some experiments are conducted so as to verify the proposed model, and as a result, implemented cable-spreading program is well performed.

본 논문에서는 발전소 전기설비의 설계 중 케이블 포설 설계가 효과적으로 이루어질 수 있도록 케이블 포설 알고리즘 개발 및 자동화 프로그램을 구현하였다. 기존의 케이블 포설 설계 작업이 수기로 작성됨에 따라 케이블 누락 및 기준치 이상의 케이블 포설 등 불필요한 오류가 발생되어 인적 시간적 투자 대비 비효율성을 갖는 반면, 제안된 케이블 포설 자동화 프로그램은 케이블과 케이블 선로 구간을 코드화하여 효과적으로 과포설 계산 및 선로 구간을 변경할 수 있도록 하였다. 실험 결과, 구현된 케이블 포설 자동화 프로그램은 설계 규격대로 수행됨을 확인할 수 있었고, 프로젝트의 규모에 따라 하루에서 한 달 이내로 설계기간을 줄일 수 있어 발전소 전기설비를 위한 케이블 포설 설계를 경제적이고 효과적으로 할 수 있을 것으로 사료된다.

Keywords

References

  1. IEEE Std. 422-2012, IEEE Guide for the Design of Cable Raceway Systems for Electric Generating Facilities, IEEE, 2013.
  2. Joseph V. Sheehan, Mark W. Earley, Jeffrey S. Sargent, John M. Caloggero and Timothy M. Croushore, "National Electrical Code 2002 Handbook," 9th ed., NFPA Pub., ch. 9, pp. 1087-1089, December 2001.
  3. Committee Report, "Recommended practice on specific aspects of cable installation in power-generating stations," Power Delivery, IEEE Power&Energy Society, Volume. 4, Issue 3, August 2002.
  4. IEEE Std. 690-1984, IEEE Standard for the Design and Installation of Cable Systems for Class 1E Circuits in Nuclear Power Generating Stations, Power Generation Committee of the IEEE and Power Engineering Society, 2002.
  5. IEEE Std. 690-2004, IEEE Standard for the Design and Installation of Cable Systems for Class 1E Circuits in Nuclear Power Generating Stations, Power Generation Committee of the IEEE and Power Engineering Society, 2005.
  6. IEEE PES. Insulated Conductors Committee [Internet]. Available: http://www.pesicc.org/iccWebSite/.
  7. National Fire Protection Association and Delmar, "NEC 2011 Handbook," 12th ed., NFPA Pub., December 2010.
  8. G. W. Seman, D.A. Silver, R.A. Bush, and T. Kendrew, "Determination of Maximum Safe Pulling Lengths For Solid Dielectric Insulated Cables," in Proceeding of IEEE Transactions on Power Apparatus and Systems, pp. 3172-3186, 2007.
  9. IEEE Std. 1185-1994, IEEE Guide for Installation Methods for Generating Station Cables, IEEE Power & Energy Society, August 2002.

Cited by

  1. Implementation of Automation Program and Efficient Cable Drum Schedule using Dynamic Programming Algorithm vol.17, pp.4, 2016, https://doi.org/10.9728/dcs.2016.17.4.257