DOI QR코드

DOI QR Code

Lipolytic Effect of Supercritical Extraction from Pine Cone (Pinus koraiensis) in Mature 3T3-L1 Adipocytes

분화된 3T3-L1 세포에서 잣송이 초임계 추출물의 지방분해 효과

  • Lee, Minhee (Department of Medical Nutrition and 3Research Institute of Medical Nutrition, Kyung Hee University) ;
  • Nam, Da-Eun (Department of Medical Nutrition and 3Research Institute of Medical Nutrition, Kyung Hee University) ;
  • Kim, Ok Kyung (Department of Medical Nutrition and 3Research Institute of Medical Nutrition, Kyung Hee University) ;
  • Heo, Seok Hyun (Korea Health Supplements Association) ;
  • Lee, Jeongmin (Department of Medical Nutrition and 3Research Institute of Medical Nutrition, Kyung Hee University)
  • 이민희 (경희대학교 의학영양학과) ;
  • 남다은 (경희대학교 의학영양학과) ;
  • 김옥경 (경희대학교 의학영양학과) ;
  • 허석현 (한국건강기능식품협회) ;
  • 이정민 (경희대학교 의학영양학과)
  • Received : 2014.05.16
  • Accepted : 2014.08.06
  • Published : 2014.09.30

Abstract

Seeds of Korean pine cone (Pinus koraiensis) have long been consumed as an edible food in countries located in North-East Asia, On the other hand, Korean pine cone, containing various polyphenols, is discarded as a useless garbage after removing seeds. This study investigated the lipolytic effects of pine cone extract in differentiated 3T3-L1 adipocytes. Intracellular lipid accumulation was measured by Oil red O staining, free glycerol release by colorimetric reaction, and expression of genes related to lipid metabolism by real-time PCR. Compared to control, pine cone extract reduced intracellular lipid accumulation by 8.8% and increased free glycerol release by 8.2% a concentration of $5{\mu}g/mL$ in differentiated 3T3-L1 adipocytes. mRNA levels of fatty acid synthesis were not significantly different between control and pine cone extract, but mRNA levels of lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) significantly increased by 38.7% and 94.1% at a concentration of $5{\mu}g/mL$, respectively. Thus, pine cone extract is suggested to have lipolytic effects through induction of LPL and HSL gene expression.

건강에 대한 관심의 증가로 천연식품뿐만 아니라 산업 부산물을 이용한 기능성 소재 탐색에 대한 연구들이 활발하게 진행되고 있다. 본 연구에서는 산업 부산물인 잣송이를 이용하여 초임계 방법으로 추출을 하여 항비만 식품 소재로서의 기능성을 알아보고자 하였다. 분화된 3T3-L1 지방세포에서 잣송이 초임계 추출물이 지방의 축적 및 지방분해에 미치는 영향을 확인한 결과, 잣송이 초임계 추출물을 1, $5{\mu}g/mL$ 농도로 처리 시 세포 내 지방 축적이 억제되었고 중성지방분해 산물인 glycerol의 함량은 증가하였다. 잣송이 초임계 추출물이 지방합성 효소 및 지방분해 효소에 미치는 영향을 알아보기 위해 real-time PCR을 실시한 결과, 잣송이 초임계 추출물은 지방합성 효소인 FAS에 아무런 영향이 나타나지 않았고, 지방분해 효소인 LPL과 HSL의 유전자 발현이 증가됨에 따라 세포 내 중성지방이 지방산과 glycerol로 분해되었음을 확인하였다. 따라서 이 결과들은 잣송이 초임계 추출물이 지방조직에서의 LPL과 HSL 유전자 발현 증가를 통한 지방분해로 항비만 효과를 나타냄을 보여주고 있다. 잣송이 초임계 추출물이 항비만 생리활성을 나타내는 기능성 식품 신소재로서 개발 가능성이 있을 것으로 사료된다.

Keywords

References

  1. Jin JA, Oh KS, Hyun YN, Choi SK, Kwon YH, Kim HJ, Woo B. 2013. Antiadipogenic effect of Vitis amurensis root methanol extract and its solvent fraction in 3T3-L1 preadipocytes. J Life Sci 23: 69-78. https://doi.org/10.5352/JLS.2013.23.1.69
  2. Spiegelman BM, Flier JS. 1996. Adipogenesis and obesity; rounding out the big picture. Cell 87: 377-389. https://doi.org/10.1016/S0092-8674(00)81359-8
  3. Visscher TL, Seidell JC. 2001. The public health impact of obesity. Annu Rev Public Health 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  4. Bray GA, Tartaglia LA. 2000. Medicinal strategies in the treatment of obesity. Nature 404: 672-677.
  5. Spiegelman BM, Flier JS. 2001. Obesity and the regulation of energy balance. Cell 104: 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  6. Ardévol A, Bladé C, Salvadó MJ, Arola L. 2000. Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3-L1 adipocytes. Int J Obes Relat Metab Disord 24: 319-324. https://doi.org/10.1038/sj.ijo.0801130
  7. Balkau B, Valensi P, Eschwege E, Slama G. 2007. A review of the metabolic syndrome. Diabetes Metab 33: 405-413. https://doi.org/10.1016/j.diabet.2007.08.001
  8. Holst D, Grimaldi PA. 2002. New factors in the regulation of adipose differentiation and metabolism. Curr Opin Lipidol 13: 241-245. https://doi.org/10.1097/00041433-200206000-00002
  9. De Ferranti S, Mozaffarian D. 2008. The perfect storm: obesity, adipocyte dyfunction, and metabolic consequences. Clin Chem 54: 945-955. https://doi.org/10.1373/clinchem.2007.100156
  10. Padwal RS, Majumar SR. 2007. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369: 71-77. https://doi.org/10.1016/S0140-6736(07)60033-6
  11. Zhi J, Moore R, Kanitra L, Mulligan TE. 2003. Effects of orlistat, a lipase inhibitor, on the pharmacokinetics of three highly lipophilic drugs (amiodarone, fluoxetine, and simvastatin) in healthy volunteers. J Clin Pharmacol 43: 428-435. https://doi.org/10.1177/0091270003252236
  12. Kim KK, Cho HJ, Kang HC, Youn BB, Lee KR. 2006. Effects on weight reduction and safety of short-term phentermine administration in Korean obese people. Yonsei Med J 47: 614-625. https://doi.org/10.3349/ymj.2006.47.5.614
  13. Cercato C, Roizenblatt VA, Leanca CC, Segal A, Lopes Filho AP, Mancini MC, Halpern A. 2009. A randomized doubleblind placebo-controlled study of the long-term efficacy and safety of diethylpropion in the treatment of obese subjects. Int J Obes 33: 857-865. https://doi.org/10.1038/ijo.2009.124
  14. Critchfield WB, Little EL Jr. 1966. Geographic Distribution of the Pines of the World. US Department Agriculture, Forest Service, Washington, DC, USA. No 991, p 4.
  15. Lee HJ, Choe YJ, Choe DH, Hong IP. 2003. Extractives of Pinus koraiensis wood. J Korean Wood Sci Technol 31:49-56.
  16. Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N, Totte J, Pieters L, Vlietinck AJ. 2002. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethopharmacol 79:213-220. https://doi.org/10.1016/S0378-8741(01)00384-1
  17. Baricevic D, Milevoj L, Borstnik J. 2001. Insecticidal effect of oregano Origanum vulgare L. ssp. hirtum Ietswaart) on bean weevil (Acanthoscelides obtectus Say). Inter J Horticult Sci 7: 84-88.
  18. Hong WT, Ko KM, Lee JG, Jang HJ, Kwak JJ. 2002. Volatile compounds of pine needle (Pinus rigida miller) extracts. J Korea Soc Tabacco Sci 24: 53-59.
  19. Kim YK, Chung KN, Hirosh I, Shigeru M. 1986. Volatile components of pinenut. Korean J Food Sci Technol 18: 105-109.
  20. Caldefie-Chézet F, Guerry M, Chalchat JC, Fusillier C, Vasson MP, Guillot J. 2004. Anti-inflammatory effects of Melaleuca alternifolia essential oil on human polymorphonuclear neutrophils and monocyte. Free Radic Res 38:805-811. https://doi.org/10.1080/1071576042000220247
  21. Medeiros R, Passos GF, Vito CE, Koepp J, Mazzuco TL, Pianowski LF. 2007. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br J Pharmacol 151: 618-627. https://doi.org/10.1038/sj.bjp.0707270
  22. Sylvestre M, Pichette A, Longtin A, Nagau F, Legault J. 2006. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J Ethnopharmacol 103: 99-102. https://doi.org/10.1016/j.jep.2005.07.011
  23. Lee EK, Kim HS, Chung SJ. 2011. Antimicrobial activity of chitosan solution with PKS (Pinus koraiensis S. et Z) and PRM (Pinus rigida Mill) extract. J Chitin Chitosan 16:117-122.
  24. Hwang HJ, Yu JS, Lee HY, Kwon DJ, Han W, Heo SI, Kim SY. 2014. Evaluations on deodorization effect and anti-oral microbial activity of essential oil from Pinus koraiensis. Korean J Plant Res 27: 1-10. https://doi.org/10.7732/kjpr.2014.27.1.001
  25. Kim CH, Lee SY, Pak JI. 2008. The extraction of essential oil from by-product of pine nut cone and its antibacterial activity. Annal Animal Resource Sci 19: 63-70.
  26. Ministry of Agriculture, Food and Rural Affairs. 2010. Statistical yearbook of forestry. Vol 36, p 296.
  27. Kim JE, Kim WY, Kim JW, Park HS, Lee SH, Lee SY, Kim MJ, Kim AR, Park SN. 2010. Antibacterial, antioxidative activity and component analysis of Pinus koraiensis leaf extracts. J Soc Cosmet Scientists Korea 36: 303-314.
  28. Berridge MV, Tan AS. 1993. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474-482. https://doi.org/10.1006/abbi.1993.1311
  29. Green H, Kehinde O. 1975. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5: 19-27. https://doi.org/10.1016/0092-8674(75)90087-2
  30. Trinder P. 1969. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22: 158-161. https://doi.org/10.1136/jcp.22.2.158
  31. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res 47: 943-946.
  32. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942.
  33. Ailhaud G, Grimaldi P, Negrel R. 1992. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12: 207-233. https://doi.org/10.1146/annurev.nu.12.070192.001231
  34. Haugen F, Zahid N, Dalen KT, Hollung K, Nebb HI, Drevon CA. 2005. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. Lipid Res 46: 143-153.
  35. Tenney R, Stansfield K, Oekala PH. 2005. Interleukin 11 signaling in 3T3-L1 adipocytes. J Cell Physiol 202: 160-166. https://doi.org/10.1002/jcp.20100
  36. MacDougald OA, Hwang CS, Fan H, Lane MD. 1995. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci USA 92: 9034-9037. https://doi.org/10.1073/pnas.92.20.9034
  37. Frayn KN, Coppack SW, Fielding BA, Humphreys SM. 1995. Coordinated regulation of hormone sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization. Adv Enzyme Regul 35: 163-178. https://doi.org/10.1016/0065-2571(94)00011-Q
  38. Kim HJ, Yun YR, Song YB, Song YO. 2008. Ani-lipogenic effects of tannic acid in 3T3-L1 adipocytes and in high fat diet-fed rats. Food Sci Biotechnol 17: 219-445.
  39. Ronnett GV, Kim EK, Landree LE, Tu Y. 2005. Fatty acid metabolism as a target for obesity treatment. Physiol Behav 85: 23-35.
  40. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawada T, Lim BO, Park DK. 2004. Red yeast rice extracts suppress adipogenesis by downregulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 75:3195-3203. https://doi.org/10.1016/j.lfs.2004.06.012
  41. Rea S, James DE. 1997. Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46: 1667-1677. https://doi.org/10.2337/diab.46.11.1667
  42. Mead JR, Irvine SA, Ramji DP. 2002. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med 80: 753-769. https://doi.org/10.1007/s00109-002-0384-9
  43. Langin D, Holm C, Lafontan M. 1996. Adipocyte hormone sensitive lipase: a major regulator of lipid metabolism. Proc Nutr Soc 55: 93-109. https://doi.org/10.1079/PNS19960013
  44. Morimoto C, Kameda K, Tsujita T, Okuda H. 2001. Relationships between lipolysis induced by various lipolytic agents and hormone sensitive lipase in rat fat cells. J Lipid Res 42: 120-127.
  45. Kim KB, Jang S. 2014. Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes. J Nutr Health 47: 1-11. https://doi.org/10.4163/jnh.2014.47.1.1
  46. Choi BH, Ahn IS, Kim YH, Park JW, Lee SY, Hyun CK, Do MS. 2006. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med 38: 599-605. https://doi.org/10.1038/emm.2006.71

Cited by

  1. KoreanCurcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats vol.10, pp.5, 2016, https://doi.org/10.4162/nrp.2016.10.5.487
  2. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells vol.21, pp.3, 2016, https://doi.org/10.3746/pnf.2016.21.3.227
  3. Potential of Fisetin as a Nutri-cosmetics Material through Evaluating Anti-oxidant and Anti-adipogenic Activities vol.14, pp.1, 2016, https://doi.org/10.20402/ajbc.2016.0003
  4. 상엽(桑葉) 추출물의 Adipogenesis 억제를 통한 항비만 활성 평가 vol.31, pp.5, 2014, https://doi.org/10.6116/kjh.2016.31.5.47.