DOI QR코드

DOI QR Code

Investigation of the Prediction Performance of Turbulence and Combustion Models for the Turbulent Partially-premixed Jet Flame

난류 부분예혼합 제트화염에 대한 난류 및 연소모델의 예측성능 검토

  • Kim, Yu Jeong (Pukyong National University, Department of Safety) ;
  • Oh, Chang Bo (Pukyong National University, Department of Safety)
  • 김유정 (부경대학교 안전공학과) ;
  • 오창보 (부경대학교 안전공학과)
  • Received : 2014.05.13
  • Accepted : 2014.08.14
  • Published : 2014.08.31

Abstract

The prediction performance of 9 model sets, which combine 3 turbulent models and 3 combustion models, was investigated numerically for turbulent partially-premixed jet flame. The standard ${\kappa}-{\varepsilon}$ (SKE), Realizable ${\kappa}-{\varepsilon}$ (RKE) and Reynolds stress model (RSM) were used as a turbulence model, and the eddy dissipation concept (EDC), steady laminar flamelet (SLF) and unsteady laminar flamelet model (ULF) were also adopted as a combustion model. The prediction performance of those 9 model sets was evaluated quantitatively and qualitatively for Sandia D flame of which flame structure was measured precisely. The flame length was predicted as, from longest to shortest, RSM > SKE > RKE, and the RKE predicted the flame length of the jet flame much shorter than experiment. The flame temperature was over predicted by the combination of RSM + SLF or RSM + ULF while the flame length obtained by RSM + SLF and RSM + ULF was well agreed with the experiment. The combination of SKE + SLF and SKE + ULF predicts well the flame length as well as the temperature distribution. The SKE turbulence model was most superior to the other turbulent models, and SKE + ULF showed the best prediction performance for the structure of turbulent partially-premixed jet flame.

3개의 난류모델과 3개의 연소모델로 구성된 9개의 모델조합을 이용하여 난류 부분예혼합 제트화염 구조에 대한 수치적 예측성능을 검토하였다. 이용된 난류모델은 표준 ${\kappa}-{\varepsilon}$ 모델(SKE), Realizable ${\kappa}-{\varepsilon}$ 모델(RKE) 및 Reynolds 응력모델(RSM)이며 연소모델들은 Eddy Dissipation Concept 모델(EDC), Steady Laminar Flamelet 모델(SLF)와 Unsteady Laminar Flamelet 모델(ULF)이다. 9개 모델조합의 예측성능을 평가하기 위하여 실험결과가 알려진 Sandia D 화염인 난류 부분예혼합 제트화염을 대상으로 수치계산을 수행하였다. 얻어진 결과로서, 화염길이의 예측은 RSM > SKE > RKE순으로 길게 예측하였으며, RKE 난류모델은 화염길이를 너무 과소 예측하는 것을 확인하였다. RSM + SLF과 RSM + ULF의 조합은 화염길이는 비교적 잘 예측하였지만 하류에서의 화염온도를 과대 예측하였다. 반면에 SKE와 연소모델의 조합에서 SLF 또는 ULF 조합은 화염길이 뿐만 아니라 하류에서의 화염온도도 비교적 잘 예측하였는 것을 확인하였다. 반경방향 화염온도 및 화학종 농도분포를 비교해 본 결과 SKE와 연소모델의 조합이 가장 예측성능이 뛰어났으며 SKE + ULF의 조합이 가장 우수한 예측성능을 갖는 것을 확인하였다.

Keywords

References

  1. Z. Shu, S. K. Aggarwal, V. R. Katta and I. K. Puri, "A Numverical Investigation of the Flame Structure of an Unsteady Inverse Partially Premixed Flame", Combustion and Flame, Vol. 111, pp. 296-311 (1997). https://doi.org/10.1016/S0010-2180(97)00007-2
  2. X. Qin, I. K. Puri and S. K. Aggarwal, "Characteristics of Lifted Triple Flames Stabilized in the Near Field of a Partially Premixed Axisymmetric Jet", Proceedings of the Combustion Institute, Vol. 29, pp. 1565-1572 (2002).
  3. X. Qin, C. W. Choi, A. Mukhopadhyay, I. K. Puri, S. K. Aggarwal and V. R. Katta, "Triple Flame Propagation and Stabilization in a Larminar Axisymmetric Jet", Combustion Theory Modelling, Vol. 8, pp. 293-314 (2004). https://doi.org/10.1088/1364-7830/8/2/006
  4. M. D. Smooke, A. Ern, M. A. Tanoff, B. A. Valdati, R. K. Mohammed, D. F. Marran and M. B. Long, "Computational and Experimental Study of NO in Axisymmetric Laminar Diffusion Flame", 26th Symposium (International) on Combustion, pp. 2161-2170 (1996).
  5. B. V. Bennett, C. S. Mcenally, L. D. Pfefferle and M. D. Smooke, "Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane/Air Flames", Combustion and Flame, Vol. 123, pp. 522-546 (2000). https://doi.org/10.1016/S0010-2180(00)00158-9
  6. B. C. Connelly, M. B. Long, M. D. Smooke, R. J. Hall and M. B. Colket, "Computational and Experimental Investigation of the Interaction of Soot and NO in Coflow Diffusion Flames", Proceedings of the Combustion Institute, Vol. 32, pp. 777-784 (2009).
  7. R. Barlow and J. Frank, "Piloted $CH_4$/Air Flames C, D, E, and F-Release 2.1", TNF Workshop, Sandia National Laboratories (2007).
  8. S. Zahirovic, R. Scharler, P. Kilpinen and I. Obernberger, "Validation of Flow Simulation and Gas Combustion Sub-models for the CFD-based Prediction of NOX Formation in Biomass Grate Furnaces", Combustion Theory and Modelling, Vol. 15, No. 1, pp. 61-87 (2011).
  9. FLUENT Theory Guide, ANSYS Inc.
  10. B. B. Dally, D. F. Fletcher and A. R. Masri, "Flow and Mixing Fields of Turbulent Bluff-body Jets and Flames", Combustion Theory and Modelling, Vol. 2, pp. 193-219 (1998). https://doi.org/10.1088/1364-7830/2/2/006
  11. T. Echekki and E. Mastorakos, "Turbulent Combustion Modeling-Advances, New Trends and Perspectives", Springer-Verlag, ISSN 0926-5112 (2012).
  12. D. Veynante and L. Vervisch, "Turbulent Combustion Modeling", Progress in Energy and Combustion Science, Vol. 28, pp. 193-266 (2002).
  13. A. Kazakov and M. Frenklach, http://www.me.berkeley.edu/drm/ (1994).
  14. N. Peters, "Turbulent Combustion", Cambridge University Press, ISBN 0 521 66082 3 (2000).