DOI QR코드

DOI QR Code

Measurement of Autoignition Temperature of Propionic Acid and 3-Hexanone System

Propionic acid와 3-Hexanone 계의 최소자연발화온도의 측정

  • Ha, Dong-Myeong (Dept. of Occupational Health and Safety Engineering, Semyung University)
  • 하동명 (세명대학교 보건안전공학과)
  • Received : 2014.06.10
  • Accepted : 2014.08.14
  • Published : 2014.08.31

Abstract

The autoignition temperaturs (AIT) of solvent mixture is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AIT and ignition delay time for Propionic acid and 3-Hexanone system by using ASTM E659 apparatus. The AITs of Propionic acid and 3-Hexanone which constituted binary system were $511^{\circ}C$ and $425^{\circ}C$, respectively. The experimental AIT of Propionic acid and 3-Hexanone system were a good agreement with the calculated AIT by the proposed equations with a few average absolute deviation (A.A.D.). And Propionic acid and 3-Hexanone system was shown the minimum autoignition temperature behavior (MAITB).

혼합물의 최소자연발화온도는 가연성액체의 안전한 취급을 위해서 중요한 지표가 된다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 Propionic acid와 3-Hexanone 계의 최소자연발화온도와 발화지연시간을 측정하였다. 2성분계를 구성하는 순수물질인 Propionic acid와 3-Hexanone 계의 최소자연발화온도는 각 각 $511^{\circ}C$$425^{\circ}C$로 측정되었다. 그리고 측정된 Propionic acid와 3-Hexanone 혼합물의 최소자연발화온도 실험값은 제시된 식에 의한 예측값과 적은 평균절대오차에서 일치하였다. 그리고 Propionic acid와 3-Hexanone 계는 일부 혼합 조성에서 두 개의 순수물질 가운데 작은 AIT 보다 낮게 측정된 AIT를 보이는 최소자연발화온도거동(Minimum Autoignition Temperature Behavior, MAITB)을 보이고 있다.

Keywords

References

  1. D. A. Crowl and J. F. Louvar, "Chemical Process Safety Fundamentals with Application", 2nd ed., Pearson Education Inc. (2002).
  2. C. F. Cullis and C. D. Foster, "Studies of the Spontaneous Ignition in the Air of Binary Hydrocarbon Mixtures", Combustion and Flame, Vol. 23, pp. 347-356 (1974). https://doi.org/10.1016/0010-2180(74)90117-5
  3. D. M. Ha, "Prediction of Autoignition Temperature of n- Propanol and n-Octane Mixture", Journal of the Korean Institute of Gas, Vol. 17, No. 2, pp. 21-27 (2013). https://doi.org/10.7842/kigas.2013.17.2.21
  4. J. Gmehing, U. Onken and W. Arlt, "Vapor-Liquid Equilibrium Data Collection", DECHEMA (1980).
  5. D. M. Ha, "The Measurement of Fire and Explosion Properties of n-Pentadecane", J. of the Korean Society of Safety, Vol. 28, No. 4, pp. 53-57 (2013). https://doi.org/10.14346/JKOSOS.2013.28.4.053
  6. V. Babrauskas, "Ignition Handbook", Fire Science Publishers, SFPE (2003).
  7. G. E. P. Box and N. R. Draper, "Empirical Model-Building and Response Surface", John-Wiley & Sons, Inc. (1987).
  8. N. N. Semenov, "Some Problems in Chemical Kinetics and Reactivity, Vol. 2", Princeton University Press, Princeton, N.J. (1959).
  9. R. E. Lenga and K. L. Votoupal, "The Sigma Aldrich Library of Regulatory and Safety Data, Volume I-III", Sigma Chemical Company and Aldrich Chemical Company Inc. (1993).
  10. NFPA, "Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids", NFPA 325M, NFPA (1991).
  11. C. J. Hilado and S. W. Clark, "Autoignition Temperature of Organic Chemicals", Chemical Engineering, Vol. 4, pp. 75-80 (1972).
  12. S. Yagyu, "Systematization of Spontaneous Ignition Temperatures of Organic Compounds (1st Report)", Research Report of the Research, Institute of Industrial Safety, RR- 26-5, Japan (1978).