DOI QR코드

DOI QR Code

Environmentally-Friendly Pretreatment of Rice Straw by an Electron Beam Irradiation

전자선 조사를 이용한 볏짚의 친환경 전처리 공정

  • Lee, Byoung-Min (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Lee, Jin-Young (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Kim, Du-Yeong (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Hong, Sung-Kwon (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Kang, Phil-Hyun (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Jeun, Joon-Pyo (Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
  • 이병민 (한국원자력연구원 공업환경연구부) ;
  • 이진영 (한국원자력연구원 공업환경연구부) ;
  • 김두영 (한국원자력연구원 공업환경연구부) ;
  • 홍성권 (충남대학교 공과대학 고분자공학과) ;
  • 강필현 (한국원자력연구원 공업환경연구부) ;
  • 전준표 (한국원자력연구원 공업환경연구부)
  • Received : 2014.04.03
  • Accepted : 2014.08.18
  • Published : 2014.08.31

Abstract

The autoclaving assisted by an irradiation pretreatment method was developed without toxic chemicals to produce fermentable sugars for their conversion to bioethanol. In the first step, electron beam irradiation (EBI) of rice straw was performed at various doses. The electron beam-irradiated rice straw was then autoclaved with DI water at $120^{\circ}C$ for 1 h. A total sugar yield of 81% was obtained from 300 kGy electron beam-irradiated rice straw after 72 h of enzymatic hydrolysis by Cellulase 1.5L (70 FPU/mL) and Novozyme-188 (40 CbU/mL). Also, the removal of hemicellulose and lignin was 32.0% and 32.5%, respectively. This result indicates that the environmentally-friendly pretreatment method of rice straw by an electron beam irradiation could be applied for bioethanol production in plant.

Keywords

References

  1. Standard Terminology Relating to Biotechnology, ASTM E1705-11.
  2. Li, M. F., Y. M. Fan, F. Xu, R. C. Sun, and X. L. Zhang (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Ind. Crop. Prod. 32: 551-559. https://doi.org/10.1016/j.indcrop.2010.07.004
  3. Girio, F. M., C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Lukasik (2010) Hemicelluloses for fuel ethanol: A review. Bioresource Technol. 101: 4775-4800. https://doi.org/10.1016/j.biortech.2010.01.088
  4. Demirbas, A. (2008) Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157: 220-229. https://doi.org/10.1016/j.jhazmat.2008.01.024
  5. Hideno, A., H. Inoue, T. Yanagida, K. Tsukahara, T. Endo, and S. Sawayama (2012) Combination of hot compressed water treatment and wet disk milling for high sugar recovery yield in enzymatic hydrolysis of rice straw. Bioresource Technol. 104: 743-748. https://doi.org/10.1016/j.biortech.2011.11.014
  6. Bak, J. S., J. K. Ko, Y. H. Han, B. C. Lee, I. G. Choi, and K. H. Kim (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technol. 100: 1285-1290. https://doi.org/10.1016/j.biortech.2008.09.010
  7. Reczey, V. K. and Z. Zacchi (2004) Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl. Biochem. Biotech. 113: 509-523.
  8. Hsu, T. and G. Gou (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technol. 101: 4907-4913. https://doi.org/10.1016/j.biortech.2009.10.009
  9. Wang, Z., D. R. Keshwani, A. P. Redding, J. J. Cheng, and Jay J. Cheng (2010) Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technol. 101: 3583-3585. https://doi.org/10.1016/j.biortech.2009.12.097
  10. Kumar, P., D. M. Barrett, M. J. Delwiche, and P. Stroeve (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 48: 3713-3729. https://doi.org/10.1021/ie801542g
  11. Wan, C. and Y. Li (2010) Microbial pretreatment of corn stover with ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technol. 101: 6398-6403. https://doi.org/10.1016/j.biortech.2010.03.070
  12. Lee, B. M., J. Y. Lee, P. H. Kang, S. K. Hong, and J. P. Jeun (2014) Improved pretreatment process using an electron beam for optimization of glucose yield with high selectivity. Appl. Biochem. Biotechnol. DOI 10.1007/s12010-014-1138-1
  13. Chen, W. H., B. L. Pen, C. T. Yu, and W. S. Hwang (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technol. 102: 2916-2924. https://doi.org/10.1016/j.biortech.2010.11.052
  14. Chiaramonti, D., M. Prussi, S. Ferrero, L. Oriani, P. Ottonello, P. Torre, and F. Cherchi (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg. 46: 25-35. https://doi.org/10.1016/j.biombioe.2012.04.020
  15. Kim, S. D. and B. E. Dale (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26: 361-375. https://doi.org/10.1016/j.biombioe.2003.08.002
  16. Ratnam, B. V., M. N. Rao, M. D. Rao, and C. Ayyanna (2003) Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World J. Microb. Biot. 19: 523-526. https://doi.org/10.1023/A:1025174731814
  17. Zhao, H., M. H. Kwak, C. Zhang, H. M. Brown, B. W. Arey, and E. H. Johnathan (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd. Polym. 68: 235-241. https://doi.org/10.1016/j.carbpol.2006.12.013
  18. Selig, M, N. Weiss, and Y. Ji (2008) Enzymatic saccharification of lignocellulosic biomass. Technical Report NREL/TP-510-42629, NREL, Colorado, USA.
  19. Sluiter, A., B. Hames, R. Ruiz, C. Scarlate, J. Sluiter, D. Templeton, and D. Crocker (2012) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510- 42618, NREL, Colorado, USA.
  20. Ruiz, R., Ehrman, T. (1996) Determining of carbohydrates in biomass by high performance liquid chromatography. Chemical Analysis and Testing Task Laboratory Analytical Procedure #002, NREL, Colorado, USA.
  21. TAPPI T 222 om-02 (2002) Acid-insoluble lignin in wood and pulp. Technical Association of the Pulp and Paper Industry.
  22. Bin, Y. and C. Hongzhang (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresource Technol. 101: 9114-9119. https://doi.org/10.1016/j.biortech.2010.07.033
  23. Binod, P., R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey (2010) Bioethanol production from rice straw: An overview. Bioresource Technol. 101: 4767-4774. https://doi.org/10.1016/j.biortech.2009.10.079
  24. Limayem, A. and S. C. Ricke (2012) Lignocellulosic biomass for bioethanol production-current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467. https://doi.org/10.1016/j.pecs.2012.03.002
  25. Gumuskaya, E., M. Usta, and H. Krici (2003) The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym. Degrad. Stabil. 81: 559-564. https://doi.org/10.1016/S0141-3910(03)00157-5
  26. Chen, W. H., S. C. Ye, and H. K. Sheen (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl. Energ. 93: 234-244.
  27. Khan, A. W (1986) Effects of electron-beam irradiation pretreatment on the enzymatic hydrolysis of softwood. Biotehchnol. Bioeng. 28: 1449-1453. https://doi.org/10.1002/bit.260280921
  28. Karthika, K., A. B. Arun, and P. D. Rekha (2012) Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohyd. Polym. 90: 1038-1045. https://doi.org/10.1016/j.carbpol.2012.06.040
  29. Saha, B. C., T. Yoshida, M. A. Cotta, and K. Sonomoto (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind. Crop. Prod. 44: 367-372. https://doi.org/10.1016/j.indcrop.2012.11.025
  30. Oh, S. Y., D. I. Yoo, Y. Shin, H. C. Kim, H. Y. Kim, Y. S. Chung, W. H. Park, and J. H. Youk (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd. Res. 340: 2376-2391. https://doi.org/10.1016/j.carres.2005.08.007
  31. Kumar, R., G. Mago, V. Balan, and C. E. Wyman (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Biosour. Bioeng. 100: 3948-3962.
  32. Chundawat, P. S. S., B. Venkatesh, and B. E. Dale (2006) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Appl. Biochem. Biotechnol. 96: 219-231.