DOI QR코드

DOI QR Code

Production of Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by using Fed-batch Culture of Recombinant Pichia pastoris

재조합 Pichia pastoris의 유가식 배양을 통한 남극세균 Flavobacterium frigoris PS1 유래 결빙방지단백질의 생산

  • Kim, Eun Jae (Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Do, Hackwon (Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Lee, Jun Hyuck (Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Lee, Sung Gu (Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Kim, Hak Jun (Department of Chemistry, Pukyung National University) ;
  • Han, Se Jong (Division of Life Sciences, Korea Polar Research Institute, KIOST)
  • 김은재 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부) ;
  • 도학원 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부) ;
  • 이준혁 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부) ;
  • 이성구 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부) ;
  • 김학준 (부경대학교 화학과) ;
  • 한세종 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부)
  • Received : 2014.07.04
  • Accepted : 2014.07.31
  • Published : 2014.08.31

Abstract

Antifreeze proteins (AFP) inhibit ice growth to permit the survival of polar organisms in the cold environments. The recombinant AFP from an Antarctic bacterium, Flavobacterium frigoris PS1, FfIBP (Flavobacterium frigoris ice-binding protein), was produced using Pichia pastoris expression system. The optimum fermentation temperature ($30^{\circ}C$) and pH (5) for FfIBP production were determined using a fed-batch culture system. The maximal cell density and purified FfIBP were 112 g/L and 70 mg/L, respectively. The thermal hysteresis (TH) activity (0.85) of FfIBP obtained using a glycerol-methanol fed-batch culture system was 2-fold higher than that of the LeIBP (Leucosporidium ice-binding protein). This work allows for large-scale production of FfIBP, which could be extended to further application studies using recombinant AFPs.

Keywords

References

  1. Jia, Z. and P. L. Davies (2002) Antifreeze proteins: An unusual receptor- ligand interaction. Trends Biochem Sci. 27: 101-106. https://doi.org/10.1016/S0968-0004(01)02028-X
  2. Barrett, J. (2001) Thermal hysteresis proteins. Int. J. Biochem. Cell Biol. 33: 105-117. https://doi.org/10.1016/S1357-2725(00)00083-2
  3. Ben, R. N. (2001) Antifreeze glycoproteins--preventing the growth of ice. Chembiochem. 2: 161-166. https://doi.org/10.1002/1439-7633(20010302)2:3<161::AID-CBIC161>3.0.CO;2-F
  4. Bouvet, V. and R. N. Ben (2003) Antifreeze glycoproteins: Structure, conformation, and biological applications. Cell Biochem. Biophys. 39: 133-144. https://doi.org/10.1385/CBB:39:2:133
  5. Fuller, B. J. (2004) Cryoprotectants: The essential antifreezes to protect life in the frozen state. CryoLetters 25: 375-388.
  6. Harding, M. M., P. I. Anderberg, and A. D. Haymet (2003) 'Antifreeze' glycoproteins from polar fish. Eur. J. Biochem. 270: 1381-1392. https://doi.org/10.1046/j.1432-1033.2003.03488.x
  7. Lee, J. K., K. S. Park, S. Park, H. Park, Y. H. Song, S. H. Kang, and H. J. Kim (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60: 222-228. https://doi.org/10.1016/j.cryobiol.2010.01.002
  8. Lee, J. H., A. K. Park, H. Do, K. S. Park, S. H. Moh, Y. M. Chi, and H. J. Kim (2012) Structural basis for antifreeze activity of icebinding protein from arctic yeast. J. Biol. Chem. 287: 11460-11468. https://doi.org/10.1074/jbc.M111.331835
  9. Park, K. S., H. Do, J. H. Lee, S. I. Park, E. Kim, S. J. Kim, S. H. Kang, and H. J. Kim (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64: 286-296. https://doi.org/10.1016/j.cryobiol.2012.02.014
  10. Lee, J. H., S. G. Lee, H. Do, J. C. Park, E. Kim, Y. H. Choe, S. J. Han, and H. J. Kim (2013) Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl. Microbiol. Biotechnol. 97: 3383-3393. https://doi.org/10.1007/s00253-012-4594-y
  11. Do, H., S. J. Kim, H. J. Kim, and J. H. Lee (2014) Structure-based characterization and antifreeze properties of a hyperactive icebinding protein from the Antarctic bacterium Flavobacterium frigoris PS1. Acta Crystallogr. D Biol. Crystallogr. 70: 1061-1073. https://doi.org/10.1107/S1399004714000996
  12. Lee, S. G., H. Y. Koh, S. J. Han, H. Park, D. C. Na, I. C. Kim, H. K. Lee, and J. H. Yim (2010) Expression of recombinant endochitinase from the Antarctic bacterium, Sanguibacter antarcticus KO PRI 21702 in Pichia pastoris by codon optimization. Protein Expr. Purif. 71: 108-114. https://doi.org/10.1016/j.pep.2010.01.017

Cited by

  1. Regulated strategies of cold-adapted microorganisms in response to cold: a review vol.28, pp.48, 2014, https://doi.org/10.1007/s11356-021-16843-6