DOI QR코드

DOI QR Code

Numerical Investigation of Drag and Lift Characteristics of Cavitator of Supercavitating Underwater Vehicle

초공동 수중운동체 캐비테이터의 항력과 양력특성에 관한 수치해석적 연구

  • Kang, Byung Yun (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Jang, Seyeon (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kang, Shin-Hyoung (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 강병윤 (서울대학교 기계항공공학부) ;
  • 장세연 (서울대학교 기계항공공학부) ;
  • 강신형 (서울대학교 기계항공공학부)
  • Received : 2013.11.18
  • Accepted : 2014.08.14
  • Published : 2014.10.01

Abstract

The purpose of this study was to investigate the drag and lift characteristics of the cavitator of a supercavitating underwater vehicle and the pressure loss due to water intake. These investigations were performed by changing the diameter, velocity, radius of curvature of the intake, and angle of attack of the cavitator. With increasing ratio of the intake diameter to the cavitator diameter ratio($d/D_1$), the drag coefficient and the pressure loss coefficient of the water intake decreased. The greater the increase in the ratio of the intake velocity-to-free stream velocity ratio(S), the smaller was the decrease in the drag coefficient and the lift coefficient. When the intake had a radius of curvature(c), the pressure loss coefficient decreased. On the contrary, the effect of the radius of curvature on the drag coefficient was imperceptible. For angles of attack (${\alpha}$) of the caviatator in the range of $0^{\circ}$ to $10^{\circ}$, the drag coefficient and the pressure loss coefficient changed slightly, whereas the lift coefficient increased linearly with increasing angle of attack.

본 연구의 목적은 해수 흡입구를 고려한 초공동 수중운동체 캐비테이터의 항력과 양력특성 및 해수 흡입유로의 입구에서 압력손실에 대해 예측하는 것이다. 흡입구 직경과 유로에서의 속도, 흡입구의 곡률반경 및 캐비테이터의 받음각이 미치는 영향에 대해 유동해석을 수행하였다. 연구 결과 직경비가 커지면, 항력계수와 압력손실계수가 감소하며, 속도비가 증가할 때 항력계수와 양력계수는 감소하고 압력손실계수는 증가한다. 해수 흡입구에 곡률을 주면 항력계수와 양력계수에는 영향을 미치지 않지만, 압력손실계수가 크게 감소한다. 캐비테이터의 받음각은 항력계수와 압력손실계수에 미소한 영향만을 주나, 양력계수를 크게 변화시킨다. 초공동 수중운동체 설계 시 본 연구 결과를 반영할 수 있다.

Keywords

References

  1. Kim, Y. G. and Nah, Y. I., 2011, "Propulsion Technologies of Supercavitating Rocket Torpedo, Shkval," Proceedings of the 2011 KSPE Fall conference, pp. 383-387.
  2. Jung, H. G. and Kim, N. W., 2010, "Study on Longitudinal Modeling and Attitude Control for Supercavitating Underwater Vehicles," 2010 KSAS Spring conference, pp. 623-626.
  3. Jung, H. G., Ahn, S. S. and Kim, N. W., 2010, "Study on Modeling for Supercavitation Underwater Vehicles," 2010 KSAS Fall conference, pp. 812-815.
  4. Park, S. I., Park, W. K. and Jung, C. M., 2009, "Numerical Code Development of Supercaviting Flow Around an Underwater Vehicle," 2009 KSCFE Fall conference, pp. 188-192.
  5. Lee, H. B., Choi, J. K. and Kim, H. T., 2013, "Numerical Analysis of Supercavitating Flows of Two-Dimensional Simple Bodies," Journal of the Society of Naval Architects of Korea, Vol. 50, No. 6, pp. 436-449. https://doi.org/10.3744/SNAK.2013.50.6.436
  6. Kim, D. H., Park, W. K. and Jung, C. M., 2012, "Numerical Multi Phase Flow Analysis for High Speed Underwater Vehicle with Compressible Effect," 2012 KSCFE Fall conference, pp. 119-122.
  7. Park, H. M., Park, W. K. and Jung, C. M., 2012, "Comparison of CFD Simulation and Experiment of Cavitating Flow Past Axisymmetric Cylinder," Jounal of Computational Fluid Engineering, Vol. 17, No. 1, pp. 78-85. https://doi.org/10.6112/kscfe.2012.17.1.078