DOI QR코드

DOI QR Code

Capillary Assembly of Silicon Nanowires Using the Removable Topographical Patterns

  • Hong, Juree (Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Seulah (Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Sanggeun (Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University) ;
  • Seo, Jungmok (Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Taeyoon (Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2014.07.08
  • Accepted : 2014.08.26
  • Published : 2014.10.27

Abstract

We demonstrate a simple and effective method to accurately position silicon nanowires (Si NWs) at desirable locations using drop-casting of Si NW inks; this process is suitable for applications in nanoelectronics or nanophotonics. Si NWs were assembled into a lithographically patterned sacrificial photoresist (PR) template by means of capillary interactions at the solution interface. In this process, we varied the type of solvent of the SiNW-containing solution to investigate different assembly behaviors of Si NWs in different solvents. It was found that the assembly of Si NWs was strongly dependent on the surface energy of the solvents, which leads to different evaporation modes of the Si NW solution. After Si NW assembly, the PR template was cleanly removed by thermal decomposition or chemical dissolution and the Si NWs were transferred onto the underlying substrate, preserving its position without any damage. This method enables the precise control necessary to produce highly integrated NW assemblies on all length scales since assembly template is easily fabricated with top-down lithography and removed in a simple process after bottom-up drop-casting of NWs.

Keywords

References

  1. S. W. Chung, J. Y. Yu and J. R. Health, Appl. Phys. Lett., 76, 2068 (2000). https://doi.org/10.1063/1.126257
  2. Y. Cui and C. M. Lieber, Science, 291(5505), 851 (2001). https://doi.org/10.1126/science.291.5505.851
  3. G. Zheng, W. Lu, S. Jin and C. M. Lieber, Adv. Mater., 16(21), 1890 (2004). https://doi.org/10.1002/adma.200400472
  4. L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima and J. Rand, Appl. Phys. Lett., 91, 233117 (2007). https://doi.org/10.1063/1.2821113
  5. Y. Lee, K. Kakushima, K. Shiraishi, K. Natori and H. Iwai, J. Appl. Phys., 107, 113705 (2010). https://doi.org/10.1063/1.3388324
  6. P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo and T. E. Mallouk, Appl. Phys. Lett., 77(9), 1399 (2000). https://doi.org/10.1063/1.1290272
  7. M. Tanase, L. A. Bauer, A. Hultgren, D. M. Silevitch, L. Sun, D. H. Reich, P. C. Searson and G. J. Meyer, Nano Lett., 1(3), 155 (2001). https://doi.org/10.1021/nl005532s
  8. B. Messer, J. H. Song and P. Yang, J. Am. Chem. Soc., 122(41), 10232 (2000). https://doi.org/10.1021/ja002553f
  9. W. Salalha and E. Zussman, Phys. Fluids, 17(6), 1 (2005).
  10. J. Huang, R. Fan, S. Connor and P. Yang, Angew. Chem. Int. Edit., 46(14), 2414 (2007). https://doi.org/10.1002/anie.200604789
  11. A. J. Petsi, A. N. Kalarakis and V. N. Burganos, Chem. Eng. Sci., 65(10), 2978 (2010). https://doi.org/10.1016/j.ces.2010.01.028
  12. P. Yang and F. Kim, ChemPhysChem, 3(6), 503 (2002). https://doi.org/10.1002/1439-7641(20020617)3:6<503::AID-CPHC503>3.0.CO;2-U
  13. F. Kim, S. Kwan, J. Akana and P. Yang, J. Am. Chem. Soc., 123(18), 4360 (2001). https://doi.org/10.1021/ja0059138
  14. A. R. Tao, J. Huang and P. Yang, Accounts Chem. Res., 41(12), 1662 (2008). https://doi.org/10.1021/ar8000525
  15. D. Whang, S. Jin, Y. Wu and C. M. Lieber, Nano Lett., 3(9), 1255 (2003). https://doi.org/10.1021/nl0345062
  16. Y. K. Kim, S. J. Park, J. P. Koo, D. J. Oh, G. T. Kim, S. Hong and J. S. Ha, Nanotechnology, 17(5), 1375 (2006). https://doi.org/10.1088/0957-4484/17/5/035
  17. Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi and A. Javey, Nano Lett., 8(1), 20 (2008). https://doi.org/10.1021/nl071626r
  18. M. Lee, J. Im, B. Y. Lee, S. Myung, J. Kang, L. Huang, Y. K. Kwon and S. Hong, Nat. Nanotechnology, 1(1), 66 (2006). https://doi.org/10.1038/nnano.2006.46
  19. S. J. Oh, Y. Cheng, J. Zhang, H. Shimoda and O. Zhou, Appl. Phys. Lett., 82(15), 2521 (2003). https://doi.org/10.1063/1.1563812
  20. K. Heo, E. Cho, J. E. Yang, M. H. Kim, M. Lee, B. Y. Lee, S. G. Kwon, M. S. Lee, M. H. Jo, H. J. Choi, T. Hyeon and S. Hong, Nano Lett., 8(12), 4523 (2008). https://doi.org/10.1021/nl802570m
  21. S. Lee, J. H. Koo, J. Seo, S. D. Kim, K. H. Lee, S. Im, Y. W. Kim, T. Lee, J. Nanopart. Res., 14, 840 (2012). https://doi.org/10.1007/s11051-012-0840-6
  22. H. Y. Erbil, G. McHale, M. I. Newton, Langmuir, 18(7), 2636 (2002). https://doi.org/10.1021/la011470p
  23. R. Sharma, C. Y. Lee, J. H. Choi, K. Chen and M. S. Strano, Nano Lett., 7(9), 2693 (2007). https://doi.org/10.1021/nl0711211