DOI QR코드

DOI QR Code

Effect of Seawater/Fresh Water Flow Rates on Power Density of Reverse Electrodialysis

RED 전력밀도에 미치는 해수/담수 유량의 영향

  • Na, Jong-Chan (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Han-Ki (Jeju Global Research Center, Korea Institute of Energy Research) ;
  • Kim, Chan-Soo (Jeju Global Research Center, Korea Institute of Energy Research) ;
  • Han, Moon-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 나종찬 (충남대학교 에너지과학기술대학원) ;
  • 김한기 (한국에너지기술연구원 해양융복합연구실) ;
  • 김찬수 (한국에너지기술연구원 해양융복합연구실) ;
  • 한문희 (충남대학교 에너지과학기술대학원)
  • Received : 2014.09.05
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

Reverse electrodialysis (RED) is a technique to produce electricity from two feed water that has different salinity. Recently, RED has been considered the attractive technology because this new process has large global potential and possibility to generate energy from abundant but largely unused resources. To make RED an economically attractive technology, the optimization of operation condition should be developed. In this study, we investigate the relation of internal resistance to power density of RED. And the effect of sea water and fresh water flow rate on power density was confirmed. To minimize the internal resistance and to increase power density of RED, the ratio of sea water and fresh water flow rate was optimized. Experimental result show the best performance with $1.30W/m^2$ of power density at 1.7 flow ratio of seawater/freshwater.

최근 해수와 담수의 염분농도차를 이용하여 발전하는 역전기투석(reverse electrodialysis, RED)은 잠재량이 크고 지속적 전력생산이 가능한 친환경적이며 미래지향적 신재생에너지로 인식되어 연구가 활발히 진행되고 있다. 이러한 RED 기술의 상용화를 위해서는 최적화된 운전조건을 찾는 것이 중요하며 특히, 스택 내부의 저항을 최소화하는 연구가 절실한 상황이다. 본 연구에서는 RED의 중요한 운전조건인 해수와 담수의 공급유량이 내부저항에 미치는 영향을 조사하고, 해수와 담수의 유량비에 따른 내부저항과 전력밀도의 관계를 고찰하여 최적의 운전조건을 실험적으로 파악하였다. 그 결과 전체유량 80 mL/min에서 최적의 해수/담수 유량비는 1.7이었으며, 이때 전력밀도는 $1.30W/m^2$을 얻을 수 있었다.

Keywords

References

  1. Pattle, R. E., "Production of electric power by mixing fresh and salt water in the hydroelectric pile," Nature, 174, 660 (1954). https://doi.org/10.1038/174660a0
  2. Wick, G. L. and Schmitt, W. R., "Prospects for renewable energy from sea," Mar. Technol. Soc. J., 11, 16-21(1977).
  3. Post, J. W., Hamelers, H. V. M. and Buisman, C. J. N., "Energy recovery from controlled mixing salt and fresh water with a reverse electro-dialysis system," Environ. Sci. Technol., 42, 5785-5790(2008). https://doi.org/10.1021/es8004317
  4. Vermaas, D. A., Saakes, M. and Nijmeijer, K., "Doubled power density from salinity gradients at reduced intermembrane distance," Environ. Sci. Technol., 45, 7089-7095(2011). https://doi.org/10.1021/es2012758
  5. Shin, D. W., Kim, H. K., Kim, T. H., Park, J. S. and Jeon, D. H., "Numerical Analysis for the Effect of Spacer in Reverse Electrodialysis," Clean Technol., 19, 1-7(2013). https://doi.org/10.7464/ksct.2013.19.1.001
  6. Veerman, J., Saakes, M., Metz, S. J. and Harmsen, G. J., "Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant," Environ. Sci. Technol., 44, 9207-9212(2010). https://doi.org/10.1021/es1009345
  7. Dlugolecki, P., Nymeijer, K., Metz, S. and Wessling, M., "Current status of ion exchange membranes for power generation from salinity gradients," J. Membr. Sci., 319, 214-222(2008). https://doi.org/10.1016/j.memsci.2008.03.037
  8. Vermaas, D. A., Saakes, M. and Nijmeijer, K., "Power generation using profiled membranes in reverse electrodialysis," J. Membr. Sci., 385-386, 234-242(2011). https://doi.org/10.1016/j.memsci.2011.09.043
  9. Lacey, R. E., "Energy by Reverse Electrodialysis," Ocean Eng., 7, 1-47(1980). https://doi.org/10.1016/0029-8018(80)90030-X
  10. Veerman, J., De Jong, R. M., Saakes, M., Metz, S. J. and Harmsen, G. J., "Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density," J. Membr. Sci., 343, 7-15(2009). https://doi.org/10.1016/j.memsci.2009.05.047
  11. Veerman, J., Saakes, M., Metz, S. J. and Harmsen, G. J., "Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water," J. Membr. Sci., 327, 136-144(2009). https://doi.org/10.1016/j.memsci.2008.11.015
  12. Post, J. W., Hamelers, H. V. M. and Buisman, C. J. N., "Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system," J. Membr. Sci., 330, 65-72(2009). https://doi.org/10.1016/j.memsci.2008.12.042
  13. Dlugolecki, P., Gambier, A., Nijmeijer, K. and Wessling, M., "Practical potential of reverse electrodialysis as process for sustainable energy generation," Environ. Sci. Technol., 43, 6888-6894(2009). https://doi.org/10.1021/es9009635