DOI QR코드

DOI QR Code

The Study on Methods for Setting of Water Quality Goal and Estimation of Allocation Loads on TMDL System Using a Dynamic Water Quality Model

동적모델을 이용한 수질오염총량제 목표수질 설정 및 할당부하량 산정방안 연구

  • Kim, Eun-Jung (Watershed and Total Load Management Research Division, National Institute of Environmental Research) ;
  • Park, Bae-Kyung (Watershed and Total Load Management Research Division, National Institute of Environmental Research) ;
  • Shin, Dong-Suk (Watershed and Total Load Management Research Division, National Institute of Environmental Research) ;
  • Kim, Yong-Seok (Watershed and Total Load Management Research Division, National Institute of Environmental Research) ;
  • Rhew, Doug-Hee (Watershed and Total Load Management Research Division, National Institute of Environmental Research)
  • 김은정 (국립환경과학원 유역총량연구과) ;
  • 박배경 (국립환경과학원 유역총량연구과) ;
  • 신동석 (국립환경과학원 유역총량연구과) ;
  • 김용석 (국립환경과학원 유역총량연구과) ;
  • 류덕희 (국립환경과학원 유역총량연구과)
  • Received : 2014.09.05
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

In this study, the applicability of dynamic water quality model to TMDL system was examined, methods for setting of water quality goal and estimation of allocation loads were suggested and results of applying these methods were analyzed. HSPF model was applied for Miho stream basin as a dynamic water quality model. The model was calibrated using measurement data obtained in 2009~2010 and showed satisfactory performance in predicting daily variations of flow rate and BOD concentration. Methods for TMDL application were categorized into 3 cases; water quality management (1) considering low flow condition(Case I), (2) considering entire period of the year (Case II) and (3) considering the worst water quality condition (Case III). BOD water quality goals at the end of Miho stream watershed increased in the order of Case IICase I>Case III. If further researches on base precipitation and method for model input of nonpoint source pollutant were carried out, water quality could be managed more reasonably and scientifically by applying dynamic water quality model to TMDL. The result of this study is expected to be used as primary data for TMDL using dynamic water quality model.

본 연구에서는 동적모델의 수질오염총량제 적용성을 검토하였으며, 동적모델을 이용한 목표수질 설정 및 할당부하량 산정 방법을 제시하고 그 결과를 분석하였다. 동적모델 중 HSPF 유역모형을 미호천 유역에 대하여 구축하였으며, 보정 결과 구축된 모형은 2009년~2010년에 대하여 일유량 변화와 BOD 농도 변화를 잘 재현하는 것으로 판단되었다. 동적모델을 이용한 수질오염총량제 적용 방안은 3가지 case; (1)저수기 조건을 고려한 수질관리 방법(Case I), (2)연중 전 기간을 고려한 수질관리 방법(Case II), (3)연중 최악의 수질조건을 고려한 수질관리 방법(Case III)으로 나누어 제시하였다. 미호천 유역 말단에서 각 조건에 따른 BOD 목표수질을 산정한 결과는 Case II(4.2 mg/L) < Case I(5.0 mg/L) < Case III(7.8 mg/L) 순으로 연중 전 기간을 고려한 경우에서 가장 낮고 최악조건을 고려한 경우에서 가장 높았다. 할당부하량은 Case II > Case I > Case III 순으로 높게 나타났으며 최악조건을 고려한 경우에서 가장 엄격한 할당부하량이 산정되었다. 기준 강우 선정 및 비점오염원의 모델 적용방식 등에 대한 추가연구가 필요하며, 이들이 반영된다면 수질오염총량제에 동적모델을 적용함으로 인해 좀 더 합리적이고 과학적인 수질관리가 이루어질 것이라 사료된다.

Keywords

References

  1. Park, J. D., Kim, J. L., Rhew, D. H. and Jung, D. I., "A Study on the water quality patterns of unit watersheds for the management of TMDLs in Nakdong river basin," J. Kor. Soc. Water Environ., 26(2), 279-288(2010).
  2. Horn, A. L., Rueda, F. J., Hormann, G. and Fohrer, N., "Implementing river water quality modelling issues in mesoscale watershed models for water policy demands-an overview on current concepts, deficits, and future tasks," Phys. Chem. Earth, 29, 725-737(2004). https://doi.org/10.1016/j.pce.2004.05.001
  3. Migliaccio, K. W., Chaubey, I. and Haggard, B. E., "Evaluation of landscape and instream modeling to predict watershed nutrient yields," Environ. Modell. Softw., 22, 987-999(2007). https://doi.org/10.1016/j.envsoft.2006.06.010
  4. Ha, S. R., Lee, J. H., Seo, S. D., Lee, S. C. and Park, J. H., "Assesment of water quality standards using stochastic distribution characteristics between dynamic modeling results and observed data," J. Environ. Impact Asses., 17(1), 47-56(2008).
  5. Hwang, H. S., Yoon, C. G. and Kim, J. T., "Application load duration curve for evaluation of impaired watershed at TMDL unit watershed in Korea," J. Kor. Soc. Water Environ., 26(6), 903-909(2010).
  6. Park, J. H., Hwang, H. S., Rhew, D. H. and Kwon, O. S., "Estimation of delivery ratio based on BASINS/HSPF model for total maximum daily load," J. Kor. Soc. Water Environ., 28(6), 833-842(2012).
  7. Lee, E. J. and Kim, T. G., "Evaluation of applicability for nonpoint discharge coefficient using watershed model," J. Environ. Impact Asses., 21(3), 339-352(2012).
  8. Choi, H. H. and Lee, Y. S., "Assessment of conceptual rainfall runoff models for regionalisation at miho catchment," J. Kor. Soc. Hazard. Mitigat., 12(1), 193-203(2012). https://doi.org/10.9798/KOSHAM.2012.12.1.193
  9. Kim, J. I., Choi, J. W. and An, K. G., "Spatial and temporal variations of water quality in an urban miho stream and some influences of the tributaries on the water quality," J. Kor. Environ. Sci. Soc., 23(3), 433-445(2014). https://doi.org/10.5322/JESI.2014.23.3.433
  10. NIER, Performance measurement of total maximum daily loads for the 1st phase in Guem river, National Institute of Environmental Research, Korea(2011).
  11. Park, J. H., Oh, S. Y. and Lee, J. K., "Evaluation of Water quality goal and load allocation achievement ratio in Geum river total maximum daily loads for the 1st phase," J. Kor. Soc. Water Environ., 28(6), 859-865(2012).
  12. Shin, C. M., Na, E. Y., Lee, E. J., Kim, D. G. and Min, J. H., "Operational hydrological forecast for the Nakdong river basin using HSPF watershed model," J. Kor. Soc. Water Environ., 29(2), 212-222(2013).
  13. Yi, H. S., Jeong, S. A., Park, S. Y. and Lee, Y. S., "Modeling study of turbid water in the stratified reservoir using linkage of HSPF and CE-QUAL-W2," J. Kor. Soc. Environ. Eng., 30(1), 69-78(2008).
  14. Donigian, A. S., Jr., Bicknell, B. R. and Imhoff, J. C., "Chapter 12: hydrological simulation program: FORTRAN (HSPF)," Computer Models of Watershed Hydrology, V. P. Singh(ed), Water Resources Publications, pp. 395-442(1995).
  15. Diaz-Ramirez, J. N., Perez-Algeria, L. R. and McAnally, W. H., "Hydrology and sediment modeling using BASINS/ HSPF in a tropical island watershed," Am. Soc. Agric. Biol. Eng., 51(5), 1555-1565(2008).
  16. Bicknell, B. R., Imhoff, J. C., Kittle Jr., J. L., Donigian, A. S. and Johanson, R. C., Hydrological Simulation Program- FORTRAN user's manual for release 12, U. S. Environmental Protection agency, Environmental Research Laboratory, Athens, GA(1993).
  17. Ji, Z. G., Hydrodynamics and water quality : modeling rivers, lakes and estuaries, John Wiley & Sons, Inc, Hoboken, New Jersey, pp. 1-676(2008).
  18. ASCE task committee on definition of criteria for evaluation of watershed models of the watershed management committee, Irrigation and drainage division, "Criteria for evaluation of watershed models," J. Irrig. Drain Eng., 119 (3), 429-442(1993). https://doi.org/10.1061/(ASCE)0733-9437(1993)119:3(429)
  19. Cleland, B., TMDL development from the bottom up-part III: duration curves and wet weather assessment, America's clean water foundation, washington, DC(2003).
  20. Park, J. D. and Oh, S. Y., "Methodology for the Identification of impaired waters using LDC for the management of total maximum daily loads," J. Kor. Soc. Water Environ., 28 (5), 693-703(2012).
  21. Donigian, A. S. Jr., "Watershed model calibration and validation: The HSPF experience," In Proceedings of the Water Environment Federation, National TMDL Science and Policy 2002, Phoenix AZ, pp. 44-73(2002).