DOI QR코드

DOI QR Code

Optimization of Manufacturing Method for a Fiber Type of Biosorbent from Sludge Waste

폐슬러지로부터 섬유형 생체흡착제 제조방법의 최적화

  • Seo, Ji Hae (Department of Environmental Engineering, Yonsei University) ;
  • Kim, Namgyu (Department of Environmental Engineering, Yonsei University) ;
  • Park, Munsik (Department of Environmental Engineering, Yonsei University) ;
  • Lee, Sunkyung (Department of Environmental Engineering, Yonsei University) ;
  • Park, Donghee (Department of Environmental Engineering, Yonsei University)
  • Received : 2014.07.15
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

In this study, sludge waste which has a difficulty in treating it was used to manufacture a fiber type of biosorbent. To solve the problems such as the release of organic pollutants and the difficulty in separating solid from treated water, entrapment method using Ca-alginate was used to immobilize sludge waste. Considering ease of manufacture as well as improvement of adsorptive ability, the biosorbent was manufactured in the form of fiber type. Optimum immobilization condition for minimizing the amount of alginate used and maximizing the performance of biosorbent was determined to be 10 g/L alginate concentration, 40 g/L sludge concentration, and 0.3-0.4 mm fiber diameter. The maximum Cd(II) uptake of the biosorbent was 60.73 mg/g. Pseudo-second-order kinetic model and Langmuir isotherm model adequately described the dynamic and equilibrium behaviors of Cd(II) biosorption onto the biosorbent, respectively. In conclusion, sludge waste generated from wastewater treatment process is a cheap raw material for the manufacture of biosorbent which can be used to remove toxic heavy metals from industrial wastewaters efficiently.

연구에서는 폐기물 처리에 어려움을 겪고 있는 폐슬러지를 원료로 사용하여 섬유(fiber) 형태의 생체흡착제를 제조하였다. 유기성 오염물의 용출 문제 및 처리수의 고액분리 문제를 해결하기 위하여 Ca-alginate를 이용해 폐슬러지를 고정화하였으며, 제조의 용이성 및 흡착제로써의 성능을 향상시키기 위하여 섬유 형태로 생체흡착제를 제조하였다. Alginate 사용량을 최소화 하면서 제조한 생체흡착제의 성능을 최대화 하기 위한 고정화 조건은 alginate 농도 10 g/L, 폐슬러지 농도 40 g/L, 생체흡착제 직경 0.3~0.4 mm로 결정하였다. 제조한 섬유형 생체흡착제는 2가 양이온 중금속인 Cd(II)에 대해 60.73 mg/g의 최대흡착량을 보였으며, Cd(II) 흡착 거동은 Psuedo-second-order 속도모델과 Langmuir 등온흡착모델로 잘 설명되었다. 결론적으로, 하폐수 처리공정에서 발생하는 폐슬러지는 생체흡착제를 제조하는데 사용될 수 있는 저렴한 원료이며, 이렇게 제조한 생체흡착제는 산업폐수에 함유된 유독성 중금속을 효율적으로 제거하는데 사용될 수 있다.

Keywords

References

  1. Shin, T. S., Woo, B. S., Lim, B. S. and Kim. K. Y., "Biosorption characteristics of Pb and Cu by Ca-alginate immobilized algae Spirulina platensis," J. Kor. Soc. Environ. Eng., 30(4), 446-452(2008).
  2. Park, D., Yun, Y.-S. and Park, J. M., "The past, present, and future trends of biosorption," Biotechnol. Bioproc. Eng., 15, 86-102(2010). https://doi.org/10.1007/s12257-009-0199-4
  3. Fomina, M. and Gadd, G. M., "Biosorption: current perspectives on concept, definition and application," Bioresour. Technol., 160, 3-14(2014). https://doi.org/10.1016/j.biortech.2013.12.102
  4. Seo, H., Lee, M. and Wang, S., "Equilibrium and kinetic studies of the biosorption of dissolved metals on Bacillus drentensis immobilized in biocarrier beads," Environ. Eng. Res., 18(1), 45-53(2013). https://doi.org/10.4491/eer.2013.18.1.045
  5. Kwon, T.-N. and Jeon, C., "Desorption and Regeneration characteristics for previously adsorbed indium ion phosphorylated sawdust," Environ. Eng. Res., 17(2), 65-67(2013). https://doi.org/10.4491/eer.2012.17.2.065
  6. Zhang, H. L., Lin, Y. N. and Wang, L., "Biosorption of copper by calcium alginate from excess activated sludge," Environ. Technol., 30(13), 1461-1467(2009). https://doi.org/10.1080/09593330903213853
  7. Paul Chen, J., Lie, D., Wang, L., Wu, S. and Zhang, B., "Dried waste activated sludge as biosorbents for metal removal: adsorptive characterization and prevention of organic leaching," J. Chem. Technol. Biotechnol., 77(6), 657-662 (2002). https://doi.org/10.1002/jctb.627
  8. Ho, Y.-S., "Review of second-order models for adsorption systems," J. Hazard. Mater., 136(3), 681-689(2006). https://doi.org/10.1016/j.jhazmat.2005.12.043
  9. Aksu, Z., "Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of lead (II) ions onto Chlorella vulgaris," Proc. Biochem., 38(1), 89-99(2002). https://doi.org/10.1016/S0032-9592(02)00051-1
  10. Elouear, Z., Bouzid, J. and Boujelben N., "Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: Study in single and binary systems," Environ. Technol., 30(6), 561-570(2009). https://doi.org/10.1080/09593330902824940
  11. Hammaini, A., Gonzalez, F., Ballester, A., Blazquez, M. L. and Munoz, J. A., "Biosorption of heavy metals by activated sludge and their desorption characteristics," J. Environ. Manage., 84(4), 419-426(2007). https://doi.org/10.1016/j.jenvman.2006.06.015
  12. Naiya, T. K., Bhattacharya, A. K. and Das, S. K., "Removal of Cd(II) from aqueous solutions using clarified sludge," J. Colloid Interface Sci., 325(1), 48-56(2008). https://doi.org/10.1016/j.jcis.2008.06.003
  13. Kusvuran, E., Yildirim, D., Samil, A. and Gulnaz, O., "A Study: Removal of Cu(II), Cd(II), and Pb(II) Ions from real industrial water and contaminated water using activated sludge biomass," Clean-Soil Air Water, 40(11), 1273-1283(2012). https://doi.org/10.1002/clen.201100443
  14. Remenarova, L., Pipiska, M., Hornik, M., Rozloznik, M., Augustin, J. and Lesny, J. "Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study," J. Taiwan Inst. Chem. Eng., 43(3), 433-443(2012). https://doi.org/10.1016/j.jtice.2011.12.004
  15. Hawari, A. H. and Muligan, C. N., "Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass," Bioresour. Technol., 97(4), 692-700(2006). https://doi.org/10.1016/j.biortech.2005.03.033
  16. Vijayaraghavan, K. and Yun, Y.-S., "Bacterial biosorbents and biosorption," Biotechnol. Adv., 26(3), 266-291(2008). https://doi.org/10.1016/j.biotechadv.2008.02.002
  17. Langmuir, I., "The adsorption of gases on plane surfaces of glass, mica, and platinum," J. Am. Chem. Soc., 40(9), 1361-1403(1918). https://doi.org/10.1021/ja02242a004