DOI QR코드

DOI QR Code

Anti-inflammatory effect of Polygonum multiflorum extraction in activated RAW 264.7 cells with lipopolysaccharide

Lipopolysaccharide로 활성화된 RAW 264.7 세포에서 적하수오(Polygonum multiflorum) 추출물의 항염증 효과 검증

  • Lee, Eunsu (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Kim, Hyeongjeong (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Yu, Jae-Myo (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Cho, Yong-Hun (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Kim, Dong-In (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Shin, Yuhyeon (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Cho, Yeongje (School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University) ;
  • Kwon, O-Jun (Regional industry Evaluation Agency for Gyeongbuk) ;
  • An, Bongjeon (Department of Cosmeceutical Science, Daegu Hanny University)
  • 이은수 (대구한의대학교 화장품약리학과) ;
  • 김현정 (대구한의대학교 화장품약리학과) ;
  • 유재묘 (대구한의대학교 화장품약리학과) ;
  • 조용훈 (대구한의대학교 화장품약리학과) ;
  • 김동인 (대구한의대학교 화장품약리학과) ;
  • 신유현 (대구한의대학교 화장품약리학과) ;
  • 조영제 (경북대학교 식품공학부/식품생물산업연구소) ;
  • 권오준 (대경지역사업평가원/경북지역산업평가단) ;
  • 안봉전 (대구한의대학교 화장품약리학과)
  • Received : 2014.05.21
  • Accepted : 2014.09.03
  • Published : 2014.10.30

Abstract

The anti-inflammatory effects of Polygonum multiflorum water extracts (PMWs) and Polygonum multiflorum 70 % ethanol extracts(PMEs) were investigated using lipopolysaccharide-induce by inflammatory response. The inhibitory effects of PMWs and PMEs on the production of nitric oxide (NO) and pro - inflammatory cytokines in LPS - activated Raw 264.7 cells were investigated. The effects were examined after reducing production of Nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels. RAW 264.7 cells were cultured with LPS ($1{\mu}g/mL$) in the presence or absence of PMWs and PMEs for 24 h to determine their NO, iNOS, COX-2 levels. During the entire experimental period 10, 25, 50 and $100{\mu}g/mL$ of PMWs and PMEs showed no cytotoxicity. At these concentrations, PMWs and PMEs concentration dependently reduced the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-$1{\beta}$ (IL-$1{\beta}$). PMWs and PMEs were inhibited the activittion of iNOS, COX-2 by 89%, 54%, 91% and 57% respectively, at $100{\mu}g/mL$. These results indicate that PMWs and PMEs significantly reduces the effect of oxidative and inflammatory cytokines.

적하수오 추출물의 추출용매별 항염증 작용을 알아보기 위해 LPS로 자극된 RAW 264.7 세포를 이용하여 실험을 진행 한 결과 열수 추출물 및 70% 에탄올 추출물 모두 $100{\mu}g/mL$에서 60%이상의 NO 생성 억제 율을 보이는 것을 확인 하였다. 또한 사이토 카인들에 대하여 적하수오 추출물은 TNF-${\alpha}$, IL-$1{\beta}$, IL-6, $PGE_2$ 생성량은 농도 의존적으로 감소하였고, 이는 적하수오 추출물이 염증성 사이토 카인의 발현을 억제 하여 염증 발생을 억제 할 수 있다고 할 수 있다. PMW는 $100{\mu}g/mL$의 농도에서 iNOS 단백질 발현량이 89%, COX-2는 54%의 효과를 나타내었으며, PME는 $100{\mu}g/mL$의 농도에서 iNOS 91%, COX-2는 57%의 단백질 발현 저해효과가 있음을 확인 할 결과로 보아 적하수오는 대식세포에서 NO, TNF-${\alpha}$, IL-$1{\beta}$, IL-6, PGE2 iNOS, COX-2 발현을 억제 하며, 특히 적하수오 70% 에탄올 추출물의 경우 저 농도에서부터 효과를 나타내어 우수한 항염증 소재임을 확인 할 수 있었다.

Keywords

References

  1. Higuchi M, Higashi N, Taki H, Osawa T (1990) Cytolytic mechanism of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanism acts as synergistically as the major cytolytic mechanism of activated macrophages, J Immunol, 144, 1425-31.
  2. Hernandez-Ledesma B, Hsieh CC, de Lumen BO (2009) Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem, 390, 803-8.
  3. Yonglimsa (2000) National Professor of Herbology College of Oriental Medicine. Herbology, Seoul, Korea, p 583-4.
  4. Hippeli S, Elstner EF (1999) Inhibition of biochemical model reactions for inflammatory processes by plant exreacts: a review on recent developments. Free Radic Res, 31 Supp l, S81-7.
  5. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage fuction. Annu Rev Immunol, 15, 323-50. https://doi.org/10.1146/annurev.immunol.15.1.323
  6. Albina JE, Reichner JS (1999) Nitric oxide in inflammation and immunity. New Horiz, 3, 46-64.
  7. Lee YS. Kim HS, Kim SK, Kim SD (2000) IL-6 mRNA Expression in Mouse Peritoneal Macrophages and NIH3T3 Fibroblasts in Response to Candida albicans, J Microbiol Biotechnol, 10, 8-15.
  8. Sinilsangsa (2005) Herbal pharmacology textbook compilation committee. Herbal Pharmacology, 755-6.
  9. Hirohashi N, Morrison DC (1996) Low-dose lipopolysaccharide (LPS) pretreatment of mouse macrophage in vitro. Infect Immun, 64, 1011.
  10. Mu MM, Chakravotty D, Sugiyama, Koide N, Takahashi K, Morei I, Yoshida T and Yokochi T (2001) The inhibitory action of quercetin on lipopolysaccharideinduced nitric oxide production in RAW 264.7 macrophage cells. J Endotoxin Res, 7, 431-8. https://doi.org/10.1179/096805101101533034
  11. Won SJ, Park HJ, Lee KT (2008) Inhibition of LPS induced iNOS, COX-2 and cytokines expression by salidroside through the NF-$\kappa$B inactivation in RAW 264.7 cells. Korean J Pharmacogn, 39, 110-7.
  12. Funk CD (2001) Prostaglandins and leukotrienes advances in eicosanoid biology. Science, 294, 1871-1875. https://doi.org/10.1126/science.294.5548.1871
  13. Ramadori G, Damme JV, Rieder H, Buschenfelde KH (1988) Interleukin 6, the third mediator of acute phase reaction, modulates hepatic protein synthesis in heman and mouse. Comparison with interleukin $1{\beta}$ and tumor necrosis factor-$\alpha$. Eur J Immunol, 18, 1259-1264. https://doi.org/10.1002/eji.1830180817
  14. Tetley TD (2005) Inflammatory cells and chronic obstructive pulmonary disease. Curr Drug Targets Inflamm Allergy, 4, 607-18. https://doi.org/10.2174/156801005774912824
  15. Park SC, Son DY (2011) Inhibitory effects of Euphorbiasupina Eafin on the production of proinflammatory mediator by LPS-stimulated RAW 264.7 macrophages. Food Sci Nutr, 40, 486-92.
  16. Maruotti N, Cantatore FP, Crivellato E, Vacca A, Ribatti D (2007) Macrophages in rheumatoid arthritis. Histopathol, 22, 581-6.
  17. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med, 178, 749-54. https://doi.org/10.1084/jem.178.2.749
  18. Ko SK, Pyo MY (2011) Anti-inflammatory effect of Inonotus obliquus extracts in lipopolysaccharide- induced mouse peritoneal macrophage. Korean J Pharmacogn, 42, 253-259.
  19. Lee SJ, Lim KT (2008) Phytogly coprotein inhibits interleukin-$1{\beta}$ and interleukin-6 via p38 mitogenactivated protein kinase in lipopolysaccharide-stimulated RAW 264.7 cells. Naunyn schmi Arch Pharmacol, 377, 45-54. https://doi.org/10.1007/s00210-007-0253-8
  20. Horwood NJ, Page TH, McDaid JP, Palmer CD, Campbell j, Mahon T, Brennan FM, Webster D, Foxwell BM (2006) Bruton's tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J Immunol, 176, 3635-41. https://doi.org/10.4049/jimmunol.176.6.3635
  21. Kang TB., Yoon TJ (2011) Effect of herbal composition on alcohol degradation and anti-inflammatory activity in mice. Korean J Food Nutr, 24, 489-495. https://doi.org/10.9799/ksfan.2011.24.4.489
  22. An deokgyun (1999) Gyohaksa, Korean herbology book, Seoul, Korea, 675.
  23. Aeberi D, Oertle S, Mauron H, Reichenbach S, Jordi B, Villiger PM (2002) Inhibition of the TNF pathway : use of infliximab and etanercept se remission - inducing agents in cases of therapy-resistant chronic inflammatory disorders. Swiss Med 132, 414-22.

Cited by

  1. Effects of -decoction Water-extract on Anti-inflammation, Anti-oxidation and Skin Whitening vol.32, pp.3, 2015, https://doi.org/10.13045/acupunct.2015044
  2. Anti-Inflammatory Effect of Ethanol Extract from Onion (Allium cepa L.) Peel on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1612
  3. on induced to LPS with Raw 264.7 cell vol.61, pp.2, 2018, https://doi.org/10.3839/jabc.2018.021
  4. 적하수오 에탄올 추출물의 melanin 합성 촉진효과 vol.27, pp.4, 2014, https://doi.org/10.5352/jls.2017.27.4.423
  5. 항염증 물질 생산 능력이 우수한 야생효모의 선별 및 이들의 균학적 특성 vol.45, pp.3, 2017, https://doi.org/10.4489/kjm.20170025
  6. Lipopolysaccharide로 유도한 RAW 264.7 세포에 대한 Meyerozyma guilliermondii YJ34-2와 Rhodotorula graminis YJ36-1의 항염활성과 Nitric Oxide 생성 저해물질의 생산 vol.45, pp.4, 2014, https://doi.org/10.4489/kjm.20170039
  7. 현미 주정 추출물의 항산화 활성 및 melanin 합성 촉진 효과 vol.28, pp.8, 2014, https://doi.org/10.5352/jls.2018.28.8.908
  8. Calamagrostis arundinacea (실새풀) 추출물의 항노화 및 항염증 활성 vol.31, pp.3, 2021, https://doi.org/10.5352/jls.2021.31.3.298