DOI QR코드

DOI QR Code

Assessment of Anti-nutritive Activity of Tannins in Tea By-products Based on In vitro Rumen Fermentation

  • Kondo, Makoto (Graduate School of Bioresources, Mie University) ;
  • Hirano, Yoshiaki (Graduate School of Bioagricultural Sciences, Nagoya University) ;
  • Ikai, Noriyuki (Graduate School of Bioagricultural Sciences, Nagoya University) ;
  • Kita, Kazumi (Graduate School of Bioagricultural Sciences, Nagoya University) ;
  • Jayanegara, Anuraga (Faculty of Animal Science, Bogor Agricultural University) ;
  • Yokota, Hiro-Omi (Graduate School of Bioagricultural Sciences, Nagoya University)
  • Received : 2014.03.20
  • Accepted : 2014.05.12
  • Published : 2014.11.01

Abstract

Nutritive values of green and black tea by-products and anti-nutritive activity of their tannins were evaluated in an in vitro rumen fermentation using various molecular weights of polyethylene glycols (PEG), polyvinyl pyrrolidone (PVP) and polyvinyl polypyrrolidone as tannin-binding agents. Significant improvement in gas production by addition of PEG4000, 6000 and 20000 and PVP was observed only from black tea by-product, but not from green tea by-product. All tannin binding agents increased $NH_3$-N concentration from both green and black tea by-products in the fermentation medium, and the PEG6000 and 20000 showed relatively higher improvement in the $NH_3$-N concentration. The PEG6000 and 20000 also improved in vitro organic matter digestibility and metabolizable energy contents of both tea by-products. It was concluded that high molecular PEG would be suitable to assess the suppressive activity of tannins in tea by-products by in vitro fermentation. Higher responses to gas production and $NH_3$-N concentration from black tea by-product than green tea by-product due to PEG indicate that tannins in black tea by-product could suppress rumen fermentation more strongly than that in green tea by-product.

Keywords

References

  1. Abarghuei, M. J., Y. Rouzbehan, and D. Alipour. 2010. The influence of the grape pomace on the ruminal parameters of sheep. Livest. Sci. 132:73-79. https://doi.org/10.1016/j.livsci.2010.05.002
  2. Al-Masri, M. R. 2012. An in vitro nutritive evaluation of olive tree (Olea europaea) pruning residues as affected by cutting regimen. Bioresour. Technol. 103:234-238. https://doi.org/10.1016/j.biortech.2011.09.130
  3. AOAC International. 2002. Official Methods of Analysis of AOAC International. 17th ed., Gaithersburg, MD, USA.
  4. Ben Salem, H., A. Nefzaoui, L. Ben Salem, and J. L. Tisserand. 1999. Different means of administering polyethylene glycol to sheep: effect on the nutritive value of Acacia cyanophylla Lindl. foliage. Anim. Sci. 68:809-818.
  5. Bhatta, R., S. Mani, L. Saruah, and K. T. Sampath. 2012. Phenolic composition, fermentation profile, protozoa population and methane production from sheanut (Butryospermum Parkii) byproducts in vitro. Asian Australas. J. Anim. Sci. 25:1389-1394. https://doi.org/10.5713/ajas.2012.12229
  6. Getachew, G., H. P. S. Makkar, and K. Becker. 2000. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. Br. J. Nutr. 84:73-83.
  7. Jayanegara, A., N. Togtokhbayar, H. P. S. Makkar, and K. Becker. 2009. Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system. Anim. Feed Sci. Technol. 150:230-237. https://doi.org/10.1016/j.anifeedsci.2008.10.011
  8. Jones, D. E. 1965. Banana tannin and its reaction with polyethylene glycols. Nature 206:299-300. https://doi.org/10.1038/206299a0
  9. Kondo, M., K. Kita, and H. Yokota. 2004a. Effects of tea leaf waste of green tea, oolong tea, and black tea addition on Sudangrass silage quality and in vitro gas production. J. Sci. Food Agric. 84:721-727. https://doi.org/10.1002/jsfa.1718
  10. Kondo, M., N. Nishino, K. Kita, and H. Yokota. 2004b. Enhanced lactic acid fermentation of silage by the addition of green tea waste. J. Sci. Food Agric. 84: 728-734. https://doi.org/10.1002/jsfa.1726
  11. Kondo, M., Y. Hirano, K. Kita, A. Jayanegara, and H. Yokota. 2014. Fermentation characteristics, tannin contents and in vitro ruminal degradation of green tea and black tea by-products ensiled at different temperatures. Asian Australas. J. Anim. Sci. 27:937-945. https://doi.org/10.5713/ajas.2013.13387
  12. Licitra, G., T. M. Hernandez, and P. J. Van Soest. 1996. Standarization of procedures for nitrogen fractionation of ruminant feed. Anim. Feed Sci. Technol. 57:347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  13. Makkar, H. P. S. 2004. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources, in: Assessing quality and safety of animal feeds. FAO Animal Production and Health 160, Rome, Italy. pp. 55-88.
  14. Makkar, H. P. S., M. Blummel, and K. Becker. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 73: 897-913. https://doi.org/10.1079/BJN19950095
  15. Makkar, H. P. S. and A. V. Goodchild. 1996. Quantification of tannins: a laboratory manual. ICARDA, Aleppo, Syria.
  16. Menke, K. H. and H. Stengass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
  17. Mueller-Harvey, I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86:2010-2037. https://doi.org/10.1002/jsfa.2577
  18. Oh, K., T. Kato, Z. P. Li, and F. Y. Li. 2006. Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide. Pedosphere 16:770-777. https://doi.org/10.1016/S1002-0160(06)60113-6
  19. Osuga, I. M., S. A. Abdulrazak, T. Ichinohe, J. O. Ondiek, and T. Fujihara. 2006. Degradation characteristics and tannin bioassay of some browse forage from Kenya harvested during the dry season. Anim. Sci. J. 77:414-421. https://doi.org/10.1111/j.1740-0929.2006.00367.x
  20. Osuga, I. M., C. N. Maindi, S. A. Abdlurazak, N. Nishino, T. Ichinohe, and T. Fujihara. 2007. Potential nutritive value and tannin bioassay of selected Acacia species from Kenya. J. Sci. Food Agric. 87:1533-1538. https://doi.org/10.1002/jsfa.2883
  21. Rubanza, C. D. K., M. N. Shem, R. Otsyina, S. S. Bakengesa, T. Ichinohe, and T. Fujihara, T. 2005. Polyphenolics and tannins effect on in vitro digestibility of selected Acacia species leaves. Anim. Feed Sci. Technol. 119:129-142. https://doi.org/10.1016/j.anifeedsci.2004.12.004
  22. Silanikove, N., A. Perevolotsky, and F. D. Provenza. 2001. Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim. Feed Sci. Technol. 91:69-81. https://doi.org/10.1016/S0377-8401(01)00234-6
  23. Singh, B., A. Sahoo, R. Sharma, and T. K. Bhat. 2005. Effect of polyethylene glycol on gas production parameters and nitrogen disappearance of some tree forages. Anim. Feed Sci. Technol. 123:351-364.
  24. Tolera, A., K. Khazaal, and E. R. Orskov. 1997. Nutritive evaluation of some browse species. Anim. Feed Sci. Technol. 67:181-195. https://doi.org/10.1016/S0377-8401(96)01119-4
  25. Van Soest, P. J., J. D. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, Neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  26. Wambui, C. C., S. Ando, S. A. Abdulrazak, I. M. Osuga, and T. Ichinohe. 2012. In vitro assessment of ruminal fermentation characteristics of tropical browse mixtures supplemented with yeast. Grassl. Sci. 58:53-57. https://doi.org/10.1111/j.1744-697X.2011.00236.x
  27. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. https://doi.org/10.1021/ac60252a045
  28. Yamamoto, T., L. R. Juneja, D. C. Chu, and M. Kim. 1997. Chemistry and Applications of Green Tea. CRC press, Florida, USA.
  29. Yang, C. S. and J. M. Landau. 2000. Effects of tea consumption on nutrition and health. J. Nutr. 130:2409-2412.

Cited by

  1. Effect of Polyethylene Glycol Addition on Nutritive Value of Green and Black Tea Co-products in Ruminant Nutrition vol.12, pp.5, 2017, https://doi.org/10.3923/ajava.2017.254.260
  2. gas production characteristics, ruminal degradability and post-ruminal digestibility assessed with inhibitory activity of their tannins pp.13443941, 2018, https://doi.org/10.1111/asj.13106
  3. Effect of species on chemical composition, metabolizable energy, organic matter digestibility and methane production of some legume plants grown in Turkey vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2018.1480485
  4. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review vol.20, pp.24, 2019, https://doi.org/10.3390/ijms20246196
  5. Supplementation strategies to enhance intake of romerillo (Chiliotrichum diffusum) by sheep in southern Patagonia vol.192, pp.None, 2014, https://doi.org/10.1016/j.smallrumres.2020.106205
  6. Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis vol.19, pp.1, 2014, https://doi.org/10.1080/1828051x.2020.1841571
  7. Nutritional composition of herbage of different Jerusalem artichoke genotypes vol.30, pp.2, 2014, https://doi.org/10.22358/jafs/136053/2021
  8. Chitosan as a feed additive: Its modulatory effect on methane emission and biohydrogenation under artificial rumen system vol.1098, pp.4, 2021, https://doi.org/10.1088/1757-899x/1098/4/042101
  9. Influence of different forms of flavonoid on growth performance and gut morphology of broiler: A meta-analysis vol.1098, pp.6, 2021, https://doi.org/10.1088/1757-899x/1098/6/062024
  10. Gas production kinetic and organic matter digestibility in vitro of diet supplemented by biochar and liquid smoke vol.1098, pp.6, 2021, https://doi.org/10.1088/1757-899x/1098/6/062031