DOI QR코드

DOI QR Code

Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters

  • Mamvura, Chiedza Isabel (Department of Animal Science, Chonbuk National University) ;
  • Cho, Sangbuem (Department of Animal Science, Chonbuk National University) ;
  • Mbiriri, David Tinotenda (Department of Animal Science, Chonbuk National University) ;
  • Lee, Hong-Gu (Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University) ;
  • Choi, Nag-Jin (Department of Animal Science, Chonbuk National University)
  • Received : 2014.04.17
  • Accepted : 2014.06.28
  • Published : 2014.11.01

Abstract

Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity.

Keywords

References

  1. Aly, S. M. 1992. Degumming of soybean oil. Grasasy Aceites 43:284-286. https://doi.org/10.3989/gya.1992.v43.i5.1142
  2. Anal, A. K. and H. Singh. 2007. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 18:240-251. https://doi.org/10.1016/j.tifs.2007.01.004
  3. Birthal, P. S. and P. P. Rao. 2002. Technology options for sustainable livestock production in India. Proceedings of the Workshop on Documentation, Adoption, and Impact of Livestock Technologies in India. January 18-19, 2001; International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India.
  4. Brannon-Peppas, L. 1997. Polymers in controlled drug delivery. Biomaterials 11:1-14.
  5. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  6. Cooke, R. F., N. S. Del Rio, D. Z. Caraviello, S. J. Bertics, M. H. Ramos, and R. R. Grummer. 2007. Supplemental choline for prevention and alleviation of fatty liver in dairy cattle. J. Dairy Sci. 90:2413-2418. https://doi.org/10.3168/jds.2006-028
  7. Cusack, P. M. V., N. P. McMeniman, and I. J. Lean. 2005. The physiological and production effects of increased dietary intake of vitamins E and C in feedlot cattle challenged with bovine herpesvirus 1. J. Anim. Sci. 83:2423-2433.
  8. Czerkawski, J. W., K. L. Blaxter, and F. W. Wainman. 1966. The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr. 20:349-362. https://doi.org/10.1079/BJN19660035
  9. Deshpande, S., U. Deshpande, and D. Salunkhe. 1996. Sesame oil. Bailey's Industrial Oil and Fat Products 2:457-495.
  10. Dong, Y., H. D. Bae, T. A. McAllister, G. W. Mathison, and K.-J. Cheng. 1997. Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can. J. Anim. Sci. 77:269-278. https://doi.org/10.4141/A96-078
  11. Emanuele, S. M. 2006. Microencapsulation and its application in animal nutrition. In: Proceedings of the 4th Mid-Atlantic Nutrition Conference. Date; University of Maryland, College Park, MD, USA. pp 126-131.
  12. Emanuele, S. M. and D. Putnam. 2006. Encapsulating nutrients to improve reproduction and nitrogen utilization in ruminants. In: Ruminant Nutrition Symposium. February 1-2, 2006; Best Western Gateway Grand, Gainesville FL, USA. pp. 1-2.
  13. Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  14. Farra, P. A. and L. D. Satter. 1971. Manipulation of the ruminal fermentation. III. Effect of nitrate on ruminal volatile fatty acid production and milk composition. J. Dairy Sci. 54:1018-1024. https://doi.org/10.3168/jds.S0022-0302(71)85965-9
  15. Goel, G. and H. P. S. Makkar. 2012. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 44:729-739. https://doi.org/10.1007/s11250-011-9966-2
  16. Guo, W. S., D. M. Schaefer, X. X. Guo, L. P. Ren, and Q. X. Meng. 2009. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian Australas. J. Anim. Sci. 22:542-549. https://doi.org/10.5713/ajas.2009.80361
  17. Hofer, R., J. H. Clark, G. A. Kraus, P. Saling, P. Spicher, R. Schroder, M. Kaltschmitt, E. Dinjus, F. Seyfried, and K. Hill. 2009. Sustainable solutions for modern economies. Royal Society of Chemistry, Cambridge, UK. 203 p.
  18. Johnson, K. A., R. L. Kincaid, H. H. Westberg, C. T. Gaskins, B. K. Lamb, and J. D. Cronrath. 2002. The effect of oilseeds in diets of lactating cows on milk production and methane emissions. J. Dairy Sci. 85:1509-1515. https://doi.org/10.3168/jds.S0022-0302(02)74220-3
  19. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
  20. Kochhar, S. P. 2011. Minor and speciality oils. In: Vegetable Oils in Food Technology: Composition, Properties and Uses 2nd Ed. (Ed. F. D. Gunstone). Wiley-Blackwell, Oxford, UK. 291 p.
  21. Lee, J. H., J. C. Waller, S. L. Melton, A. M. Saxton, and L. O. Pordesimo. 2004. Feeding encapsulated ground full-fat soybeans to increase polyunsaturated fat concentrations and effects on flavor volatiles in fresh lamb. J. Anim. Sci. 82:2734-2741.
  22. Leng, R. A. and T. R. Preston. 2010. Further considerations of the potential of nitrate as a high affinity electron acceptor to lower enteric methane production in ruminants. Livestock Res. Rural Dev. 22, Article #221. http://www.lrrd.org/lrrd22/12/leng22221.htm Accessed February 11, 2014
  23. Li, L., J. Davis, J. Nolan, and R. Hegarty. 2012. An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Anim. Prod. Sci. 52:653-658.
  24. Lopez, S., C. Valdes, C. J. Newbold, and R. J. Wallace. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81:59-64.
  25. Macgregor, C. A., M. R. Knobbe, and A. J. Hugo. 2007. Method for manufacturing animal feed, method for increasing the rumen bypass capability of an animal feedstuff and animal feed. US 7297356 B2.
  26. Martin, C., D. P. Morgavi, and M. Doreau. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4:351-365. https://doi.org/10.1017/S1751731109990620
  27. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109.
  28. Nazzaro, F., P. Orlando, F. Fratianni, and R. Coppola. 2012. Microencapsulation in food science and biotechnology. Curr. Opin. Biotechnol. 23:182-186. https://doi.org/10.1016/j.copbio.2011.10.001
  29. Nolan, J. V., R. S. Hegarty, J. Hegarty, I. R. Godwin, and R. Woodgate. 2010. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim. Prod. Sci. 50:801-806. https://doi.org/10.1071/AN09211
  30. Patel, P. A. S., S. C. Alagundagi, and S. R. Salakinkop. 2013. The anti-nutritional factors in forages-A review. Current Biotica 6:516-526.
  31. Ridwan, R., Y. Widyastuti, S. Budiarti, and A. Dinoto. 2010. Analysis of rumen microbial population of cattle given silage and probiotics using terminal restriction fragment length polymorphism. Microbiol. Indonesia 3:126-132.
  32. Santra, A., A. Banerjee, and S. Das. 2013. Effect of vegetable oils on ciliate protozoa, methane yield, enzyme profile and rumen fermentation in vitro. Anim. Nutr. Feed Technol. 13:181-193.
  33. Sar, C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride, and J. Takahashi. 2005. Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J. Anim. Sci. 83:644-652.
  34. Takahashi, J. 1989. Effect of nitrate content of forage on the production of volatile fatty acids by sheep rumen microbes in vitro. Jpn. J. Zootech. Sci. 60:476-483.
  35. Ungerfeld, E. M. and R. A. Kohn. 2006. The role of thermodynamics in the control of ruminal fermentation. In: Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (Eds. K. Sejrsen, T. Hvelplund, and M. O. Nielsen). Wageningen Academic Publishers, Wageningen, The Netherlands, pp. 55-85.
  36. Van Zijderveld, S. M., W. J. J. Gerrits, J. A. Apajalahti, J. R. Newbold, J. Dijkstra, R. A. Leng, and H. B. Perdok. 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856-5866. https://doi.org/10.3168/jds.2010-3281
  37. Wood, T. A., R. J. Wallace, A. Rowe, J. Price, D. R. Yanez-Ruiz, P. Murray, and C. J. Newbold. 2009. Encapsulated fumaric acid as a feed ingredient to decrease ruminal methane emissions. Anim. Feed Sci. Technol. 152:62-71. https://doi.org/10.1016/j.anifeedsci.2009.03.006
  38. Zhou, Z., Z. Yu, and Q. Meng. 2012. Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Bioresour. Technol. 103:173-179. https://doi.org/10.1016/j.biortech.2011.10.013

Cited by

  1. Managing the rumen to limit the incidence and severity of nitrite poisoning in nitrate-supplemented ruminants vol.56, pp.8, 2016, https://doi.org/10.1071/AN15324
  2. In vitro and in vivo evaluation of kenaf (Hibiscus cannabinus L.) as a roughage source for beef cattle vol.31, pp.10, 2018, https://doi.org/10.5713/ajas.17.0871
  3. Effects of nitrate supplementation and forage level on gas production, nitrogen balance and dry-matter degradation in sheep vol.59, pp.3, 2019, https://doi.org/10.1071/AN17759
  4. Long-Term Encapsulated Nitrate Supplementation Modulates Rumen Microbial Diversity and Rumen Fermentation to Reduce Methane Emission in Grazing Steers vol.10, pp.None, 2014, https://doi.org/10.3389/fmicb.2019.00614
  5. Effects of probiotics and encapsulated probiotics on enteric methane emission and nutrient digestibility in vitro vol.788, pp.1, 2014, https://doi.org/10.1088/1755-1315/788/1/012050