DOI QR코드

DOI QR Code

Estimation Method of Residual Performance for Hollow Slab at Elevated Temperature

고온에 노출된 중공슬래브의 잔존성능 추정방법

  • Choi, Hyun-Ki (Dept. of Fire and Disaster Prevention Engineering, Kyungnam University) ;
  • Chung, Joo-Hong (Dept. of Architectural Engineering, Hanyang University) ;
  • Choi, Chang-Sik (Dept. of Architectural Engineering, Hanyang University)
  • Received : 2014.06.02
  • Accepted : 2014.07.03
  • Published : 2014.10.31

Abstract

Generally, the reinforced concrete slab has great fire resistance performance because concrete has excellent thermal material properties under fire. But, in the case of hollow slab, it will be expected that hollow slabs have different temperature distribution and fire endurance performance compare to reinforced concrete slab. Because hollow slab has internal void space that occurs decreasing regenerative effect of concrete and formation of internal air layer. Evaluation method for fire resistance performance of hollow slabs was proposed using $wickstr{\ddot{o}}m^{\prime}s$ method. For the casual use of evaluation, simplified method was proposed which was limited to solid slab and donut type hollow slab which was developed by authors of this research paper. Also, verification on proposed method was performed by comparing results of fire experiment for hollow slab and evaluation results. Proposed method of the results of this study was possible to predict the residual strength and temperature distribution of slabs under fire.

일반적으로, 철근콘크리트 슬래브는 재료의 열적특성에 의해 높은 수준의 화재 저항 성능을 보유하고 있다. 그러나, 중공슬래브의 경우 일반 철근콘크리트 슬래브와는 다른 온도분포 및 화재 저항 성능을 보유하고 있을 것으로 예상된다. 중공슬래브는 콘크리트의 축열 효과를 발생시키는 공기층을 만들어내는 중공을 보유하고 있기 때문이다. 이에 연구에서는 중공슬래브의 화재 저항 성능을 평가하는 방법을 Wickstorm이 제안한 방법을 사용하여 제안하였다. 이 연구에서는 본 연구의 연구자가 제안한 도넛형 중공을 보유한 중공슬래브의 화재저항성능에 대한 단순화된 평가 방안을 제시하였다. 또한, 제안된 방법은 중공슬래브에 대한 화재실험을 통해 검증하였다. 이 연구의 결과를 통해 제안된 방법은 화재 발생 이후 중공슬래브의 잔존강도 추정이 가능함을 확인하였으며, 슬래브에 분포되는 온도의 특성을 정확하게 파악할 수 있는 것을 확인할 수 있었다.

Keywords

References

  1. CEN(European Committe for Standardization) Eurocode 1, Actions on Structures - Part 1-2:Generalactions-Actions on structures exposed to fire, 2002.
  2. CEN(European Committe for Standardization) Eurocode 2, Design of Concrete Structures - Part1 -2: Generalrules- Structural fire design, 2004.
  3. Anderberg, Y. and Thelandersson, S., Stress and Deformation Characteristics of Concrete, 2-Experimental Investigation and Material Behavior Model, Bulletin No. 54, University of Lund, Sweden, 1976.
  4. Hertz, K., Simple Temperature Calculations of Fire Exposed Concrete Constructions, Report No 159, Institute of Building Design, 1981.
  5. Choi, H. K. and Choi, C. S., "Analysis Study on Thermal Properties of Hollow Slab at Elevated Temperature," Journal of Korean Society of Hazard Mitigation, in review.
  6. Chung, J. H., Cho, H. J., Lee, S. C., Choi, H. K., and Choi, C. S. "An Experimental Study on the Fire Resistance Performance for the Donut Type Biaxial Hollow Slab," Journal of Korea Architectural Institute, Vol. 28, No. 12, 2012, pp. 3-10.
  7. ACI 216R-07, Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies, ACI, 2007, pp. 1-48.
  8. Wickstrom, A Very simple method for estimating temperature in fire exposed concrete structures, Fire technology Technical report, 46, 1986.
  9. Lee, T. G., "Fire Resistance Behaviour of High Strength Concrete Members with Vapor Pressure and Creep Models," Journal of Korea Institue of Fire Sci. & Eng., Vol. 24, No. 4, 2010, pp. 33-40.
  10. Yeo, I. H., "Estimation of Residual Strength and Analysis of Fire Resistant Performance Affecting Elements for Fire Damaged Reinforced Concrete Column," Journal of Korean Soc. Hazard Mitig., Vol. 13, No. 6, 2013, pp. 83-89. https://doi.org/10.9798/KOSHAM.2013.13.6.083