DOI QR코드

DOI QR Code

Gas Permeation Characteristics of Propylene/Propane in PEBAX-ZIF Composite Membranes

PEBAX-ZIF 복합막에 의한 Propylene/Propane의 기체투과 특성

  • Received : 2014.06.09
  • Accepted : 2014.07.05
  • Published : 2014.08.30

Abstract

PEBAX[poly(ether-block-amide)-ZIF-8(zeolitic imidazolate framework) composite membranes were prepared with different amounts of ZIF-8; 0, 1, 3, 7, 10, and 20 wt%. Gas permeation experiment were performed by varying the temperature of 25, 35, $40^{\circ}C$ under condition $6kgf/cm^2$. Gas permeability of $C_3H_6$, $C_3H_8$ and selectivity ($C_3H_6/C_3H_8$) were investigated by increasing the amount of ZIF-8 in the PEBAX. The gas permeability of $C_3H_6$ and $C_3H_8$ increased as ZIF-8 content increased among 0 to 7 wt% range and decreased among 7 to 20 wt% range. When the ZIF contents of PEBAX-ZIF composite membrane were 7 wt%, the selectivity ($C_3H_6/C_3H_8$) was taken between 3.6 and 3.8 value and also had the lowest activation energy.

PEBAX[poly(ether-block-amide)에 ZIF-8(zeolitic imidazolate framework)의 함량을 0, 1, 3, 7, 10, 20 wt%으로 하여 PEBAX-ZIF 복합막을 제조하였다. 기체투과 실험은 압력 $6kgf/cm^2$ 하에서 25, 35, $40^{\circ}C$로 온도를 달리하여 진행되었고, PEBAX-ZIF 복합막의 ZIF-8 함량 변화에 따른 $C_3H_6$$C_3H_8$의 기체투과도와 선택도($C_3H_6/C_3H_8$)를 조사하였다. $C_3H_6$$C_3H_8$의 투과기체에 대해 ZIF-8 함량 0~7 wt% 범위에서는 함량이 증가할수록 기체 투과도가 증가하다가 7~20 wt% 범위에서 함량이 증가하면 감소하는 경향을 보였다. 선택도($C_3H_6/C_3H_8$)는 PEBAX-ZIF 7 wt% 복합막에서 3.6~3.8의 값을 가지며, 가장 낮은 활성화에너지 값을 나타냈다.

Keywords

References

  1. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  2. S. M. Mauhar, B. G. Barjaktarovic, and M. N. Sovilj, "Optimization of propylene-propane distillation process", Chem. Pap., 58, 386 (2004).
  3. S. H. Lee, M. Z. Kim, C. H. Cho, and M. H. Han, "$CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-propanol/n-butanol mixed solvents", Membrane Journal, 23(5), 367 (2013).
  4. C. H. Hyung, C. D. Park, K. H. Kim, J. W. Rhim, T. S. Hwang, and H. K. Lee, "A study on the $SO_2/CO_2/N_2$ mixed gas separation using polyetherimide/PEBAX/PEG composite hollow fiber membrane", Membrane Journal, 22(6), 404 (2012).
  5. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, "Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  6. H. B. Kim, M. W. Lee, W. K. Lee, and S. H. Lee, "Permeation properties of single gases ($N_2,\;O_2,\;SF_6,\;CH_4$) through PDMS ad PEBAX membranes", Membrane Journal, 22, 201 (2012).
  7. L. Liu, A. Chakma, and X. Feng, "Propylene separation from nitrogen by poly(ether block amide) composite membranes", J. Membr. Sci., 279, 645 (2006). https://doi.org/10.1016/j.memsci.2005.12.058
  8. R. Xiaoling, R. Jizhong, L. Hui, and D. Maicun, "Permeation characteristics of light hydrocarbons through poly(amide-6-${\beta}$-ethylene oxide) multilayer composite membranes", Chin. J. Chem. Eng., 21(3), 232 (2013). https://doi.org/10.1016/S1004-9541(13)60462-0
  9. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", Proc. Natl. Acad. Sci., USA, 103 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  10. M. Askari and T. S. Chung, "Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed membranes", J. Membr. Sci., 444, 173 (2013). https://doi.org/10.1016/j.memsci.2013.05.016
  11. H. Wu, W. Zhou, and T. Yildirim, J. Am. Chem. Soc., 129, 5314 (2007). https://doi.org/10.1021/ja0691932
  12. Y. Pan, T. Li, G. Lestari, and Z. Lai, "Effective separation of propylene/propane binary mixtures by ZIF-8 membranes", J. Membr. Sci., 390-391, 93 (2012). https://doi.org/10.1016/j.memsci.2011.11.024
  13. V. Nafisi and M. B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for $CO_2$ capture", J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  14. J. H. Park, S. H. Park, and S. H. Jhung, "Microwave-syntheses of zeolitic imidazolate framework material, ZIF-8", J. Korean Chem. Soc., 53(5), 553 (2009). https://doi.org/10.5012/jkcs.2009.53.5.553
  15. N. Hara, M. Yoshimune, H. Negishi, K. Haraya, S. Hara, and T. Yamaguchi, "Diffusive separation of propylene/propane with ZIF-8 membranes", J. Membr. Sci., 450, 215 (2014). https://doi.org/10.1016/j.memsci.2013.09.012
  16. J. Cravillon, S. Munzer, S. J. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, Chem. Mater., 21, 1410 (2009). https://doi.org/10.1021/cm900166h
  17. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  18. V. I. Bondar, B. D. Freeman, and I. Pinnau, "Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. Pt. B-Polym. Phys., 37, 2463 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H
  19. M. Naghsh, M. Sadeghi, A. Moheb, M. P. Chenar, and M. Mohagheghian, "Separation of ethylene/ethane and propylene/propane by cellulose acetate-silica nanocomposite membranes", J. Membr. Sci., 423, 97 (2012).
  20. R. D. Raharjo, B. D. Freeman, D. R. Paul, G. C. Sarti, and E. S. Sanders, "Pure and mixed gas $CH_4$ and n-$C_4H_{10}$ permeability and diffusivity in poly(dimethylsiloxane)", J. Membr. Sci., 75, 306 (2007).