DOI QR코드

DOI QR Code

Effects of Cross-linking Agents on the Acetic Acid Dehydration Behaviors of PVA-PAN Composite Hollow Fiber Membranes

가교제 종류가 PVA-PAN 복합 중공사 분리막의 초산 탈수 거동에 미치는 영향

  • Kang, Su Yeon (Department of Chemical Engineering, Hannam University) ;
  • Kim, Ji Seon (Department of Chemical Engineering, Hannam University) ;
  • Cho, Eun Hye (Department of Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Chemical Engineering, Hannam University)
  • Received : 2014.07.19
  • Accepted : 2014.08.20
  • Published : 2014.08.30

Abstract

The polyacrylonitrile (PAN) hollow fiber composite membranes were prepared and their pervaporation performance was tested to concentrate the acetic acid aqueous solution. The coating of the composite membranes were confirmed by SEM images and the coating thickness was averagely $3.85{\mu}m$. As the crosslinking agent and the crosslinking temperature increase, the permeability decreases while the separation factor increases. Typically, the permeability $250g/m^2{\cdot}hr$ and the separation factor 13 were obtained for glutaraldehyde 13 wt% as the crosslinking agent and crosslinking temperature $140^{\circ}C$. And for the use of another crosslinking agent, poly (acrylic acid) 9 wt% and crosslinking temperature $140^{\circ}C$, the permeability $330g/m^2{\cdot}hr$ and separation factor 9 were obtained.

고농도의 초산수용액을 분리 농축하기 위해 polyacrylonitrile (PAN) 중공사 복합막을 제조한 후 투과증발 분리실험을 통해 제조된 복합막의 분리성능을 확인하였다. 제조된 중공사 복합막의 코팅여부를 알아보고자 SEM 사진을 측정하였으며 코팅두께가 $3.85{\mu}m$로 균일하게 코팅된 것을 확인할 수 있었다. 또한 막의 투과성능평가 실험을 수행한 결과 가교제의 농도와 가교온도가 증가함에 따라 투과도는 감소하고 선택도는 증가하는 경향을 나타내었고, 대표적인 결과로 가교제인 glutaraldehyde 농도 13 wt%, 가교온도 $140^{\circ}C$에서 투과도 $250g/m^2{\cdot}hr$, 선택도 13의 결과를 얻을 수 있었으며, 또 다른 가교제로서 poly (acrylic acid) 농도 9 wt%, 가교온도 $140^{\circ}C$일 때 투과도 $330g/m^2{\cdot}hr$, 선택도 9의 값을 얻을 수 있었다.

Keywords

References

  1. C. E. Reineke and J. A. Jagodzinski, "Highly water selective cellulosic polyelectrolyte membranes for the pervaporation of alcohol-water mixture", J. Membr. Sci., 32, 207 (1987). https://doi.org/10.1016/S0376-7388(00)85007-3
  2. R. Y. Haung and C. K. Yeom, "Pervaporation separation of aqueous mixtures using crosslinked poly(vinyl alcohol) (PVA). Part II. Permeation of ethanol-water mixtures", J. Membr. Sci., 51, 273 (1990). https://doi.org/10.1016/S0376-7388(00)80351-8
  3. E. Ruckenstein and L. Liang, "Pervaporation of ethanol-water mixtures through poly(vinyl alcohol)-poly(acrylamide) interpenetrating polymer network membranes unsupported and supported on polyethersulfone ultrafiltration membranes : a comparision", J. Membr. Sci., 110, 99 (1996). https://doi.org/10.1016/0376-7388(95)00240-5
  4. Wei Zhang and Yunxia Xu, "Separation of acetic acid/Water by pervaporation with composite membranes of sodium alginate active layer and microporous poly propylene substrate", J. Membr. Sci., 451, 135 (2014). https://doi.org/10.1016/j.memsci.2013.09.027
  5. S. B. Kuila and S. K. Ray, "Dehydration of acetic acid by pervaporation using filled IPN membranes" Sep. Purif. Technol., 81, 298 (2011).
  6. B. C. Roy and M. J. Kabir, "Ternary phase equilibrium data for acetic acid-water-solvent systems and separation of acetic acid from aqueous solution", J. Appl. Sci., 5, 720 (2005). https://doi.org/10.3923/jas.2005.720.723
  7. H. S. Choi and Y. T. Park, "The preparation of a polyimide membrane for the separation of water-acetic acid mixture through pervaporation", Membrane Journal, 9, 215 (1999).
  8. T. Takamuku and Y. Kyoshoin, "Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR" J. Phys. Chem. B, 111, 9270 (2007). https://doi.org/10.1021/jp0724976
  9. J. P. Brun and C. Larchet, "Sorption and pervaporation of dilute aqueous solutions of organic compounds through polymer membrane". J. Membr. Sci., 25, 55 (1985). https://doi.org/10.1016/S0376-7388(00)83003-3
  10. Y. M. Lee and D. Bourgeois, "Sorption, diffusion and pervaporation of organics in polymer membrane", J. Membr. Sci., 44, 161 (1989). https://doi.org/10.1016/S0376-7388(00)83350-5
  11. Y. J. Fu and C. C. Hu, "Separation of ethanol/water mixtures by pervaporation through zeolite-filled polysulfone membrane containing 3-amino propyl trimethoxysilane", Desalination, 193, 119 (2006). https://doi.org/10.1016/j.desal.2005.07.049
  12. H. J. Kim and Y. S. Song, "The study on the recovery of volatile organic components by pervaporation", Membrane Journal, 9, 51 (1999).
  13. S. M. Ahn and B. J. Chang, "Pervaporation of fluoroethanol and methacrylic acid aqueous solution through acid-resistant poly(vinyl alcohol) membranes", Membrane Journal, 15, 206 (2005).
  14. J. M. Won and B. H. Ha, "Separation of aqueous ethanol solution using a PAA-PAN composite membrane through pervaporation" Membrane Journal, 6, 182 (1996).
  15. R. Y. M. Haung and Y. F. Xu, "Pervaporation separation of acetic acid-water mixtures using modified membranes. Part II. Gammaray-induced grafted polyacrylic acid(PAA)-nylon 6 membranes", J. Membr. Sci., 43, 143 (1990).
  16. S. W. Kim and C. K. Yeom, "A characterization of permeation behavior of acetic acid-water mixtures through crosslinked PAA-PVA membranes in pervaporation separation", Membrane Journal, 6, 4 (1996).
  17. N. Alghezawi and O. Sanli, "Separation of acetic acid-water mixtures through acrylonitrile grafted poly(vinyl alcohol) membranes by pervaporation", Chem. Eng. Process., 44, 51 (2005). https://doi.org/10.1016/j.cep.2004.03.007