DOI QR코드

DOI QR Code

Preparation and Characterization of Polyamide Thin Film Composite Reverse Osmosis Membranes Using Hydrophilic Treated Microporous Supports

친수성 처리된 다공성 지지체를 이용한 폴리아마이드 박막 역삼투 복합막 제조 및 특성 분석

  • Son, Seung Hee (Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Jegal, Jonggeon (Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
  • 손승희 (한국화학연구원 융합연구본부 바이오화학연구센터) ;
  • 제갈종건 (한국화학연구원 융합연구본부 바이오화학연구센터)
  • Received : 2014.08.02
  • Accepted : 2014.08.20
  • Published : 2014.08.30

Abstract

It is very well known that the conventional polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membranes have excellent permselective properties, but their chlorine tolerance is not good enough. In this study, to improve such chlorine tolerance, microporous membranes containing hydrophilic functional groups such as -COOH were used as a support to prepare PA TFC RO membranes, employing the conventional interfacial polymerization method. Meta-phenylene diamine (MPD) and 2,6-diamine toluene (2,6-DAT) were used as diamine monomers and tri-mesoyl chloride (TMC) as an acid monomer. The membranes prepared were characterized using various instrumental analytical methods and permeation test set-up. The flux obtained from the membranes prepared so was more than $1.0m^3/m^2day$ at 800 psi of operating pressure, while the salt rejection was over 99.0%. The chlorine tolerance of them was also found to be better than that of the membrane prepared by using conventional polysulfone support without hydrophilic functional groups.

기존의 폴리아마이드 박막 역삼투 복합막(PA TFC RO Membrane)은 우수한 분리투과특성을 지니고 있으나 내염소성이 상대적으로 낮은 단점을 지니고 있다. 본 연구에서는 이를 해결하기 위하여 표면에 -OH나 -COOH 기가 도입된 다공성 지지체를 제조하고, 그 표면에 폴리아마이드 박막을 형성하여 역삼투 복합막을 제조하였다. 제조된 역삼투막의 구조 및 분리투과 특성은 여러 가지 기기분석 방법과 투과테스트 방법으로 분석하였다. 폴리아마이드 박막을 제조하기 위하여 아민계 단량체로는 메타-페닐렌 디아민(MPD)과 2,6-디아민 톨루엔(2,6-DAT)을 사용하였고, 디엑시드계 단량체로는 트리-메소일 클로라이드(TMC)를 사용하였다. 제조된 복합막의 투과도는 800 psi에서 약 $1.0m^3/m^2day$ 이상이었으며 이때 염배제율은 99.0% 이상이었다. 내염소성도 친수성기가 없는 폴리설폰 지지체를 사용한 복합막에 비하여 우수한 것으로 나타났다.

Keywords

References

  1. G. D. Kang, C. J. Gao, W. D. Chen, X. M. Jie, Y. M. Cao, and Q. Yuan, "Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane", J. Membr. Sci., 300, 165 (2007). https://doi.org/10.1016/j.memsci.2007.05.025
  2. S. Avlonitis, W. T. Hanbury, and T. Hodgkiess, "Chlorine degradation of aromatic polyamides", Desalination, 85, 321 (1992). https://doi.org/10.1016/0011-9164(92)80014-Z
  3. S. H. Son and J. Jegal "Preparation and characterization of polyamide reverse osmosis membranes with good chlorine tolerance", J. Appl. Polym. Sci., 120, 1245 (2011). https://doi.org/10.1002/app.33111
  4. R. J. Petersen, "Composite reverse osmosis and nanofiltration membranes", J. Membr. Sci., 83, 81 (1993). https://doi.org/10.1016/0376-7388(93)80014-O
  5. T. Shintani, H. Matsuyama, N. Kurata, and T. Ohara, "Development of a Chlorine-Resistant Polyamide Nanofiltration Membrane and Its Field-Test Results", J. Appl. Polym. Sci., 106, 4174 (2007). https://doi.org/10.1002/app.27113
  6. T. Shintani, H. Matsuyama, and N. Kurata, "Development of a chlorine-resistant polyamide reverse osmosis membrane", Desalination, 207, 340 (2007). https://doi.org/10.1016/j.desal.2006.08.009
  7. S. Konagaya, M. Tokai, and H. Kuzumoto, "Reverse Osmosis Performance and Chlorine Resistance of New Ternary Aromatic Copolyamides Comprising 3,3'-Diaminodiphenylsulfone and a Comonomer with a Carboxyl Group", J. Appl. Polym. Sci., 80, 505 (2001). https://doi.org/10.1002/1097-4628(20010425)80:4<505::AID-APP1124>3.0.CO;2-S
  8. S. Konagaya, K. Nita, Y. MatsuiI, and M. Miyagi, "New Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Hollow Fiber Configuration", J. Appl. Polym. Sci., 79, 517 (2001). https://doi.org/10.1002/1097-4628(20010118)79:3<517::AID-APP150>3.0.CO;2-J
  9. S. Konagaya and O. Watanabe, "Influence of Chemical Structure of Isophthaloyl Dichloride and Aliphatic, Cycloaliphatic, and Aromatic Diamine Compound Polyamides on Their Chlorine Resistance", J. Appl. Polym. Sci., 76, 201 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<201::AID-APP9>3.0.CO;2-8
  10. S. Konagaya, H. Kuzumoto, and O. Watanabe, "New Reverse Osmosis Membrane Materials with Higher Resistance to Chlorine", J. Appl. Polym. Sci., 75, 1357 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1357::AID-APP6>3.0.CO;2-W
  11. N. W. Kim, "Preparation and Characteristics of Fouling Resistant Nanofiltration Membranes" Membrane Journal, 17, 44 (2007).
  12. N. W. Kim, "Study of Surface Properties on Fouling Resistance of Reverse Osmosis Membranes", Membrane Journal, 12, 28 (2002).
  13. Y. G. Kim, N. W. Kim, and Y. T. Lee, "A Study on Chlorine Resistance Improvement of Reverse Osmosis Membrane by Surface Modification" Membrane Journal, 15, 320 (2005).
  14. M. Paul, H. B. Park, B. D. Freeman, A. Roy, J. E. McGrath, and J. S. Riffle, "Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes", Polymer, 49, 2243 (2008). https://doi.org/10.1016/j.polymer.2008.02.039
  15. H. B. Park, B. D. Freeman, Z. B. Zhang, M. Sankir, and J. E. McGrath, "Highly chlorine-Tolerant Polymers for Desalination", Angew. Chem., 120, 6108 (2008). https://doi.org/10.1002/ange.200800454
  16. M. Y. Jeon, K. Y. Park, and C. K. Kim, "Performance changes of composite membranes prepared from various glycidyl methacrylate derivatives and their mixtures", J. Membr. Sci., 308, 87 (2008). https://doi.org/10.1016/j.memsci.2007.09.049