DOI QR코드

DOI QR Code

Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers

폴리프로필렌 및 강섬유 보강콘크리트의 휨 성능에 관한 비교 연구

  • 조백순 (인제대학교 토목도시공학부) ;
  • 이종한 (대구대학교 토목공학과) ;
  • 백성용 (인제대학교 토목도시공학부)
  • Received : 2014.04.16
  • Accepted : 2014.10.15
  • Published : 2014.12.01

Abstract

Short discrete fibers compounded with concrete can enhance the tensile resistance and ductility of concrete. Recently, the effectiveness of the reinforcement has increased according to the increasing length of steel fiber. However, the lengthening of steel fiber requires reducing the ratio of the fiber content to remain the workability and quality of concrete. Thus, the present study evaluated the flexural performance of fiber reinforced concrete with less than l.0% fiber volume ratios of steel fiber, 30mm and 60mm long, and polypropylene fiber, being evaluated as a good reinforcing material with chemical stability, long-term durability, and cost effectiveness. Concrete with more than 0.25% steel and 0.5% polypropylene fibers improved the brittle failure of concrete after reaching cracking strength. Concrete reinforced with polypropylene exhibited deflection-softening behavior, but that with more than 0.5% polypropylene delayed stress reduction and recovered flexural strength by 60 to 80% after cracking strength. In conclusion, concrete reinforced with more than 0.75% polypropylene could improve structural flexural performance. In particular, energy absorption capacity of reinforced concrete with 1.0% polypropylene fiber was similar to that with 0.5% and 0.7% steel fibers.

섬유를 콘크리트의 보강재로 소량 혼입한 섬유 보강 콘크리트는 콘크리트의 인장저항 능력과 연성능력을 향상시킬 수 있다. 최근에는 강섬유의 적용성이 확대됨에 따라 강섬유 길이의 연장을 통해 보강의 효과를 증대시키고 있다. 섬유의 길이 연장은 동일한 시공성과 품질성을 위해 섬유 혼입률을 동시에 감소시킬 필요가 있다. 따라서, 본 연구에서는 35mm, 60mm 길이의 강섬유와 화학적인 안정성과 내구성, 경제성 등이 우수한 보강 재료로 평가되어지고 있는 폴리프로필렌 섬유에 대해 섬유혼입률 1.0% 이하에서의 휨 성능을 평가하였다. 강섬유 혼입률이 0.25% 이상, 폴리프로필렌 섬유는 혼입률 0.5% 이상에서 균열강도 도달 후 취성 파괴되는 무보강보의 파괴거동을 개선하는 효과가 나타났다. 다만, 폴리프로필렌 섬유가 혼입된 보강 콘크리트는 균열 이후 deflection-softening 거동을 보였다. 그러나, 0.5%이상의 폴리프로필렌이 혼입된 보강보는 균열 이후 최대강도가 균열강도의 약 60~80%정도 강도회복을 보였으며, 강섬유에 비해 균열 이후 응력감소현상을 지연시키는 경향이 뛰어난 것으로 판단된다. 결론적으로 폴리프로필렌 보강콘크리트는 0.75% 혼입률 이상에서는 충분히 만족할 만한 구조적 휨 성능 향상을 보일 수 있을 것으로 판단된다. 특히, 폴리프로필렌 1.0% 보강 콘크리트의 에너지 흡수 성능은 0.5%, 0.75%가 혼입된 강섬유 보강 콘크리트의 에너지 흡수성능과 거의 비슷한 것으로 평가되었다.

Keywords

References

  1. American Society for Testing and Materials (ASTM) (2007). Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading), ASTM C 1609/C 1609M-07, West Conshohocken, Pennsylvania.
  2. Chiaia, B., Fantilli, A. P. and Vallini, P. (2007). "Evaluation of minimum reinforced ratio in FRC members and application to tunnel linings." Materials and Structures, Vol. 40, pp. 593-604. https://doi.org/10.1617/s11527-006-9166-0
  3. Farhat, F. A., Nicolaides, D., Kanellopoulos, A. and Karihaloo, B. L. (2007). "High performance fibre-reinforced cimentitious composite (CARDIFRC) - Performance and application to retrofitting." Engineering Fracture Mechanics, Vol. 74, pp. 151-167. https://doi.org/10.1016/j.engfracmech.2006.01.023
  4. Gopalaratnam, S., Shah, S. P., Batson, G. B., Criswell, M. E., Ramakrishnam, V. and Wecharatana, M. (1991). "Fracture toughness of fiber reinforced concrete." ACI Materials Journal, Vol. 88, No. 4, pp. 339-353.
  5. Japanese Society of Civil Engineers (JSCE) (1984). Method of tests for steel fiber reinforced concrete, JSCE-SF4 for flexural strength and flexural toughness of SFRC, Concrete Library of JSCE, pp. 45-74.
  6. Kakooei, S., Akil, H. M., Jamshidi, M. and Rouhi, J. (2012). "The effects of polypropylene fibers on the properties of reinforced concrete structures." Construction and Building Materials, pp. 73-77.
  7. Kim, D. J., Naaman, A. E. and El-Tawil, S. (2008). "Comparative flexural behavior of four fiber reinforced cementitious composites." Cement & Concrete Composites, Vol. 30, pp. 917-928. https://doi.org/10.1016/j.cemconcomp.2008.08.002
  8. Korean Standards Association (KSA) (2010). Standard test method for making and curing concrete specimens, KS F 2403, Korea (in Korean).
  9. Martinola, G., Meda, A., Plizzari, G. A. and Rinaldi, Z. (2010). "Strengthening and repair of RC beams with fiber reinforced concrete." Cement & Concrete Composites, Vol. 32, pp. 731-739. https://doi.org/10.1016/j.cemconcomp.2010.07.001
  10. Meda, A., Minelli, F. and Plizzari, G. A. (2012). "Flexural behaviour of RC beams in fiber reinforced concrete." Composites: Part B, Vol. 43, pp. 2930-2937. https://doi.org/10.1016/j.compositesb.2012.06.003
  11. Nurdin, I. I. and Jalan, P. L. (1990). "The prospects of using polypropylene fibers as an additive in high quality concrete." Fiber Mesh, pp. 3-16.
  12. Sorelli, L. G., Meda, A. and Plizzari, G. A. (2006). "Steel fiber concrete slabs on ground: A Structural Matter." ACI Structural Journal, Vol. 103, pp. 551-558.
  13. Soroushian, P. and Bayasi, Z. (1991). "Fiber-type effects on the performance of steel fiber reinforced concrete." ACI Material Journal, Vol. 88, No. 2, pp. 129-134.

Cited by

  1. The Compressive Strength and Durability Properties of Polypropylene Fiber Reinforced EVA Concrete vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.011
  2. Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concrete vol.126, 2016, https://doi.org/10.1016/j.conbuildmat.2016.09.017
  3. Flexural Performance of Polypropylene Fiber Reinforced EVA Concrete vol.58, pp.2, 2016, https://doi.org/10.5389/KSAE.2016.58.2.083