DOI QR코드

DOI QR Code

Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis

자전연소합성법을 이용한 비정질 나노 붕소 분말 특성에미치는 첨가제의 영향

  • Joo, Sin Hyong (Graduate School of Department of Materials Science & Engineering, Chungnam National University) ;
  • Nersisyan, Hayk H. (Graduate School of Department of Materials Science & Engineering, Chungnam National University) ;
  • Lee, Tae Hyuk (Graduate School of Department of Materials Science & Engineering, Chungnam National University) ;
  • Cho, Young Hee (Hana AMT) ;
  • Kim, Hong Moule (Hana AMT) ;
  • Lee, Huk Hee (Research Center Institute of Chemical Technology) ;
  • Lee, Jong Hyeon (Graduate School of Department of Materials Science & Engineering, Chungnam National University)
  • Received : 2015.09.15
  • Accepted : 2015.10.19
  • Published : 2015.12.27

Abstract

The self-propagating high temperature synthesis approach was applied to synthesize amorphous boron nano-powders in argon atmospheres. For this purpose, we investigated the characteristics of a thermally induced combustion wave in the $B_2O_3+{\alpha}Mg$ system(${\alpha}=1.0-8.0$) in an argon atmospheres. In this study, the exothermic nature of the $B_2O_3-Mg$ reaction was investigated using thermodynamic calculations. Experimental study was conducted based on the calculation data and the SHS products consisting of crystalline boron and other compounds were obtained starting with a different initial molar ratio of Mg. It was found that the $B_2O_3$ and Mg reaction system produced a high combustion temperature with a rapid combustion reaction. In order to regulate the combustion reaction, NaCl, $Na_2B_4O_7$ and $H_3BO_3$ additives were investigated as diluents. In an experimental study, it was found that all diluents effectively stabilized the reaction regime. The final product of the $B_2O_3+{\alpha}Mg$ system with 0.5 mole $Na_2B_4O_7$ was identified to be amorphous boron nano-powders(< 100 nm).

Keywords

References

  1. X. Hui, K. Kumar, C. J. Sung, T. Edwards and D. Gardner, Fuel, 98, 176 (2012). https://doi.org/10.1016/j.fuel.2012.03.040
  2. G. R. Wilson, T. Edwards, E. Corporan and R. L. Freerks, Energy Fuels, 27, 962 (2013). https://doi.org/10.1021/ef301888b
  3. M. G. Sibi, B. Singh, R. Kumar, C. Pendem and A. K. Sinha, Green Chem., 14, 976 (2012). https://doi.org/10.1039/c2gc16264d
  4. L. Wang, J. J. Zou, X. Zhang and L. Wang, Fuel, 91, 164 (2012). https://doi.org/10.1016/j.fuel.2011.07.038
  5. B. Van Devener, J. P. L. Perez, J. Jankovich and S. L. Anderson, Energy Fuels, 23, 6111 (2009). https://doi.org/10.1021/ef900765h
  6. W. Q. Pang, X. Z. Fan, W. Zhang, H. X. Xu, J. Z. Li, Y. H. Li, X. B. Shi and Y. Li, Propellants Explos. Pyrotech., 36, 360 (2011). https://doi.org/10.1002/prep.200900112
  7. S. Mohan, M. A. Trunov, E. L. Dreizin, J. Propul. Power, 24, 199 (2008). https://doi.org/10.2514/1.30195
  8. R. A. Yetter, G. A. Risha and S. F. Son, Proc. Combust. Inst., 32, 1819 (2009). https://doi.org/10.1016/j.proci.2008.08.013
  9. A. Gany, Defense Sci. J., 56, 321 (2006). https://doi.org/10.14429/dsj.56.1895
  10. A. Ulas, K. K. Kuo and C. Gotzmer, Combust. Flame, 127, 1935 (2001). https://doi.org/10.1016/S0010-2180(01)00299-1
  11. S. Karmakar, N. Wang, S. Acharya and K. M. Dooley, Combust. Flame, 160, 3004 (2013). https://doi.org/10.1016/j.combustflame.2013.06.030
  12. P. Z. Si, M. Zhang, C. Y. You, D. Y. Geng, J. H. Du, X. G. Zhao, X. L. Ma and Z. D. Zhang, J. Mater. Sci., 38, 689 (2003). https://doi.org/10.1023/A:1021832209250
  13. B. J. Bellott, W. Noh, R. G. Nuzzo and G. S. Girolami, Chem. Commun., 22, 3214 (2009).
  14. J. V. Marzik, R. J. Suplinskas, R. H. T. Wilke, P. C. Canfield, D. K. Finnemore, M. Rindfleisch, J. Margolies and S. T. Hannahs, Physica C, 423, 83 (2005). https://doi.org/10.1016/j.physc.2005.04.005
  15. A. L. Pickering, C. Mitterbauer, N. D. Browning, S. M. Kauzlarich and P. P. Power, Chem. Commun., 6, 580 (2007).
  16. B. Van Devener, J. P. L. Perez, J. Jankovich and S. L. Anderson, Energy Fuels, 23, 6111 (2009). https://doi.org/10.1021/ef900765h
  17. M. Vignolo, G. Bovone, D. Matera, D. Nardelli, C. Bernini and A. Sergio Siri, Chem. Eng. J. 256, 32 (2014). https://doi.org/10.1016/j.cej.2014.06.118
  18. C. Y. Shin, K. S. Yun, Y. C. Park, H. H. Nersisyan and C. W. Won, J. Korean Ceram. Soc., 42, 22 (2005). https://doi.org/10.4191/KCERS.2005.42.1.022
  19. X. Y. Liu, X. D. Zhao, W. M. Hou and W. H. Su, J. Alloys Compd., 223, L7 (1995). https://doi.org/10.1016/0925-8388(95)01558-2
  20. V. Adasch, K. W. Hess, T. Ludwig, N. Vojteer and H. Hillebrecht, J. Solid State Chem., 179, 2916 (2006). https://doi.org/10.1016/j.jssc.2006.03.045
  21. H. Lorenz and I. Orgzall, Scripta Mater., 52, 537 (2005). https://doi.org/10.1016/j.scriptamat.2004.10.016