DOI QR코드

DOI QR Code

Glucose Sensing Properties of Electrospinning-Synthesized ZnO Nanofibers

전기방사로 합성된 산화아연 나노섬유의 Glucose 감응특성

  • Choi, Jong-Myoung (Department of Electronic Engineering, Inha University) ;
  • Byun, Joon-Hyuk (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Sang Sub (Department of Materials Science and Engineering, Inha University)
  • 최종명 (인하대학교 전자공학과) ;
  • 변준혁 (인하대학교 신소재공학과) ;
  • 김상섭 (인하대학교 신소재공학과)
  • Received : 2015.08.29
  • Accepted : 2015.10.19
  • Published : 2015.12.27

Abstract

The development of glucose biosensors has been attracting much attention because of their importance in monitoring glucose in the human body; such sensors are used to diagnose diabetes and related human diseases. Thanks to the high selectivity, sensitivity to glucose detection, and relatively low-cost fabrication of enzyme-immobilized electrochemical glucose sensors, these devices are recognized as one of the most intensively investigated glucose sensor types. In this work, ZnO nanofibers were synthesized using an electrospinning method with polyvinyl alcohol zinc acetate as precursor material. Using the synthesized ZnO nanofibers, we fabricated glucose biosensors in which glucose oxidase was immobilized on the ZnO nanofibers. The sensors were used to detect a wide range of glucose from 10 to 700 M with a sensitivity of $10.01nA/cm^2-{\mu}M$, indicating that the ZnO nanofiber-based glucose sensor can be used for the detection of glucose in the human body. The control of nanograins in terms of the size and crystalline quality of the individual nanofibers is required for improving the glucose-sensing abilities of the nanofibers.

Keywords

References

  1. N. S. Oliver, C. Toumazou, A. E. G. Cass and D. G. Johnston, Diabetic Med., 26, 197 (2009). https://doi.org/10.1111/j.1464-5491.2008.02642.x
  2. E. H. Yoo and S. Y. Lee, Sensors, 10, 4558 (2010). https://doi.org/10.3390/s100504558
  3. X. -Y. Lang, H. -Y. Fu, C. Hou, G. -F. Han, P. Yang, Y. -B. Liu and Q. Jiang, Nat. Commun., 4, 1 (2013).
  4. Y. Fan and Y. Huang, Analyst, 137, 1225 (2012). https://doi.org/10.1039/c2an16105b
  5. E. Murphy-Perez, S. K. Arya and S. Bhansali, Analyst, 136, 1686 (2011). https://doi.org/10.1039/c0an00977f
  6. X. Kang, Z. Mai, X. Zou, P. Cai and J. Mo, Anal. Biochem., 363, 143 (2007). https://doi.org/10.1016/j.ab.2007.01.003
  7. A. S. N. Murthy and J. Sharma, Anal. Chim. Acta, 363, 215 (1998). https://doi.org/10.1016/S0003-2670(98)00083-X
  8. M. Fang, P. S. Grant, M. J. McShane, G. B. Sukhorukove, V. O. Golub and Y. M. Lvov, Langmuir, 18, 6338 (2002). https://doi.org/10.1021/la025731m
  9. H. Xu, K. Malladi, C. Wang, L. Kulinsky, M. Song and M. Madou, Biosens. Bioelectron., 23, 1637 (2008). https://doi.org/10.1016/j.bios.2008.01.031
  10. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong and W. Huang, Appl. Phys. Lett., 89, 123902 (2006). https://doi.org/10.1063/1.2356307
  11. J. X. Wang, X. W. Sun, A. Wei. Y. Lei, X. P. Cai, C. M. Li and Z. L. Dong, Appl. Phys. Lett., 88, 233106 (2006). https://doi.org/10.1063/1.2210078
  12. A. Katoch, G. -J. Sun, S. -W. Choi, J. -H. Byun and S. S. Kim, Sens. Actuators, B, 185, 411 (2013). https://doi.org/10.1016/j.snb.2013.05.030
  13. J. Y. Kim, S. -Y. Jo, G. -J. Sun, A. Katoch, S. -W. Choi and S. S. Kim, Sens. Actuators, B, 192, 216 (2014). https://doi.org/10.1016/j.snb.2013.10.113
  14. J. Y. Kim, T. Nakayama, J. -H. Kim and S. S. Kim, J. Sensor Sci. Tech., 23, 295 (2014). https://doi.org/10.5369/JSST.2014.23.5.295
  15. Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi and L. Jin, Sens. Actuators, B, 26, 275 (2010).
  16. R. Ahmad, N. Tripathy, J. H. Kim and Y. -B. Hahn, Sens. Actuators, B, 174, 195 (2012). https://doi.org/10.1016/j.snb.2012.08.011
  17. B. Fang, C. Zhang, G. Wang, M. Wang and Y. Ji, Sens. Actuators, B, 155, 304 (2011). https://doi.org/10.1016/j.snb.2010.12.040
  18. T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang and X. Wang, Sens. Actuators, B, 138, 344 (2009). https://doi.org/10.1016/j.snb.2009.01.002