DOI QR코드

DOI QR Code

Effect of Processing Parameters on the Formation of Large Area Self-Assembled Monolayer of Polystyrene Beads by a Convective Self-Assembly Method

대류성 자기조립법을 통한 폴리스티렌 비드 대면적 단일층 형성에 미치는 공정 변수 효과

  • Seo, Ahn-na (Center for Electronic Materials Research, Korea Institute of Science and Technology) ;
  • Choi, Ji-Hwan (Department of Materials Science and Engineering, Korea University) ;
  • Pyun, Jae-chul (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Won Mok (Center for Electronic Materials Research, Korea Institute of Science and Technology) ;
  • Kim, Inho (Center for Electronic Materials Research, Korea Institute of Science and Technology) ;
  • Lee, Kyeong-Seok (Center for Electronic Materials Research, Korea Institute of Science and Technology)
  • 서안나 (한국과학기술연구원 전자재료연구단) ;
  • 최지환 (고려대학교 신소재공학과) ;
  • 변재철 (연세대학교 신소재공학과) ;
  • 김원목 (한국과학기술연구원 전자재료연구단) ;
  • 김인호 (한국과학기술연구원 전자재료연구단) ;
  • 이경석 (한국과학기술연구원 전자재료연구단)
  • Received : 2015.06.26
  • Accepted : 2015.10.19
  • Published : 2015.12.27

Abstract

Self-assembled monolayers(SAM) of microspheres such as silica and polystyrene(PS) beads have found widespread application in photonic crystals, sensors, and lithographic masks or templates. From a practical viewpoint, setting up a high-throughput process to form a SAM over large areas in a controllable manner is a key challenging issue. Various methods have been suggested including drop casting, spin coating, Langmuir Blodgett, and convective self-assembly(CSA) techniques. Among these, the CSA method has recently attracted attention due to its potential scalability to an automated high-throughput process. By controlling various parameters, this process can be precisely tuned to achieve well-ordered arrays of microspheres. In this study, using a restricted meniscus CSA method, we systematically investigate the effect of the processing parameters on the formation of large area self-assembled monolayers of PS beads. A way to provide hydrophilicity, a prerequisite for a CSA, to the surface of a hydrophobic photoresist layer, is presented in order to apply the SAM of the PS beads as a mask for photonic nanojet lithography.

Keywords

References

  1. Y. A. Vlasov, X.-Z. Bo, J. C. Sturn and D. J. Norris, Nature, 414, 289 (2001). https://doi.org/10.1038/35104529
  2. J. D. Joannoupolous, R. D. Meade and J. N. Winn, Photonic Crystals, Princeton University Press, New Jersey, (1995).
  3. I. I. Tarhan and G. H. Watson, Phys. Rev. Lett., 76, 315 (1996). https://doi.org/10.1103/PhysRevLett.76.315
  4. H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A. Mifsud and V. Fornes, Adv. Mater., 10, 480 (1998). https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<480::AID-ADMA480>3.0.CO;2-Y
  5. S. H. Park and Y. N. Xia, Langmuir, 15, 266 (1999). https://doi.org/10.1021/la980658e
  6. R. J. Spry and D. J. Kosan, Appl. Spectrosc., 40, 782 (1986). https://doi.org/10.1366/0003702864508403
  7. I. Willner and B. Willner, Pure Appl. Chem., 74, 1773 (2002). https://doi.org/10.1351/pac200274091773
  8. J. H. Holtz and S. A. Asher, Nature, 389, 829 (1997). https://doi.org/10.1038/39834
  9. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001). https://doi.org/10.1021/jp010657m
  10. A. D. Ormonde, E. C. M. Hicks, J. Castillo and R. P. V. Duyne, Langmuir, 20, 6927 (2004). https://doi.org/10.1021/la0494674
  11. N. H. Finkel, B. G. Prevo, O. D. Velev and L. He, Anal. Chem., 77, 1088 (2005). https://doi.org/10.1021/ac048645v
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, Science, 297, 820 (2002). https://doi.org/10.1126/science.1071895
  13. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron and T. W. Ebbesen, Phys. Rev. Lett., 90, 167401 (2003). https://doi.org/10.1103/PhysRevLett.90.167401
  14. R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado and A. Blanco, Adv. Mater., 9, 257 (1997). https://doi.org/10.1002/adma.19970090318
  15. Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov and M. F. Limonov, Phys. Rev. E, 61, 5784 (2000). https://doi.org/10.1103/PhysRevE.61.5784
  16. J. E. G. J. Wijnhoven and W. L. Vos, Science, 281, 802 (1998). https://doi.org/10.1126/science.281.5378.802
  17. M. Muller, R. Zentel, T. Maka, S. G. Romanov and C. M. Sotomayor Torres, Adv. Mater., 12, 1499 (2000). https://doi.org/10.1002/1521-4095(200010)12:20<1499::AID-ADMA1499>3.0.CO;2-M
  18. J. C. Hulteen and R. P. Vanduyne, J. Vac. Sci. Technol. A, 13, 1553 (1995). https://doi.org/10.1116/1.579726
  19. F. Burmeister, C. Schafle, B. Keilhofer, C. Bechinger, J. Boneberg and P. Leiderer, Adv. Mater., 10, 495 (1998). https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<495::AID-ADMA495>3.0.CO;2-A
  20. R. Micheletto, H. Fukuda and M. Ohtsu, Langmuir, 11, 3333 (1995). https://doi.org/10.1021/la00009a012
  21. H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett., 41, 377 (1982). https://doi.org/10.1063/1.93501
  22. A. Doron, E. Katz and I. Willner, Langmuir, 11, 1313 (1995). https://doi.org/10.1021/la00004a044
  23. M. Gao, X. Zhang, B. Yang and J. Shen, J. Chem. Soc. Chem. Commun., 19, 2229 (1994).
  24. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, Langmuir, 8, 3183 (1992). https://doi.org/10.1021/la00048a054
  25. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, Nature, 361, 26 (1993).
  26. W. Wu, A. Katsnelson, O. G. Memis and H. Mohseni, Nanotechnology, 18, 485302 (2007). https://doi.org/10.1088/0957-4484/18/48/485302
  27. J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee and K.- S. Lee, Appl. Phys. Exp., 5, 025201 (2012). https://doi.org/10.1143/APEX.5.025201
  28. K. Chen, S. V. Stoianov, J. Bangerter and H. D. J. Robinson, J. Colloid Interface Sci., 344, 315 (2010). https://doi.org/10.1016/j.jcis.2010.01.010
  29. A. S. Dimitrov and K. Nagayama, Langmuir, 12, 1303 (1996). https://doi.org/10.1021/la9502251
  30. B. G. Prevo and O. D. Velev, Langmuir, 20, 2099 (2004). https://doi.org/10.1021/la035295j
  31. P. Kumnorkaew, Y. Ee, N. Tansu and J. F. Gilchrist, Langmuir, 24, 12150 (2008). https://doi.org/10.1021/la801100g
  32. X.-Z. Zhang, A. V. Whitney, J. Zhao, E. N. Hicks and R. P. Van Duyne, J. Nanosci. Nanotechnol., 6, 1 (2006).