DOI QR코드

DOI QR Code

Chondrogenic Differentiation of Human Mesenchymal Stem Cells on a Patterned Polymer Surface

패턴된 폴리머를 이용한 중간엽줄기세포의 연골 분화

  • 허준석 (세브란스병원 세포치료센터)
  • Received : 2015.06.01
  • Accepted : 2015.07.02
  • Published : 2015.09.30

Abstract

Mesenchymal stem cells (MSCs) are an attractive tool in tissue engineering as they have the required potential to treat injured articular cartilage. UV-exposed DTOPV (S-triazine bridged p-phenylene vinylene) is a biocompatible and fluorescent polymer with a hydrophilic surface. Previous studies have demonstrated that the surface wettability and hydrophilicity play critical roles in regulating cell adhesion and proliferation. The objective of this study was to improve the potential of in vitro MSC differentiation into Chondrocytes using DTOPV. MSCs were cultured on two different substrates: (1) tissue culture polystyrene (TCPS) as a reference and (2) UV-exposed and patterned DTOPV films. Chondrogenesis of MSCs was induced for two weeks on TCPS and DTOPV in the presence of an induction medium containing transforming growth factor (TGF)-${\beta}3$. Interestingly, the MSCs on TCPS adhered and spread, while those on DTOPV tended to form aggregates within several days. The cells cultured on DTOPV for two weeks had a round morphology, with stronger Safranine O staining of the extracellular matrix than that of the cells cultured on TCPS. Also, Type II collagen gene was significantly expressed in cells induced on DTOPV. These results indicate that chondrogenic differentiation of MSCs proceeds more rapidly on DTOPV than on TCPS. Therefore, in cartilage tissue engineering, DTOPV could be used to induce effective chondrogenic differentiation of MSCs.

중간엽줄기세포는 손상된 관절연골 치유능력을 가지고 있어 줄기세포 치료 분야에서 대표적인 성체줄기세포로 알려져 있다. 자외선이 조사된 생체 친화성 필름 조성물인 DTOPV (S-triazine bridged p-phenylenevinylene)는 친수성 특성의 표면을 가진 형광 화합물이다. 이전의연구에서 물질표면의 습윤성과 친수성이 세포부착 및 증식에 중요한 역할을 하는 것이 확인 되었으며, 이번 연구에서는 DTOPV를 이용하여 중간엽줄기세포의 연골분화능을 향상시키고자 하였다. 일반 배양용기로 사용하고 있는 TCPS (tissue culture polystyrene)와 자외선이 조사된 패턴된 DTOPV 필름을 이 실험에 사용하였고 TGF (transforming growth factor)-${\beta}3$가 포함된연골분화배지로 중간엽줄기세포를 2주동안 분화유도를 하였다. TCPS에서 배양된 중간엽줄기세포는 단층으로 자라면서 분화가 유도된 반면, 자외선이 조사된 DTOPV 필름 위에서 배양된 세포는덩어리진 구형으로 형태가 변하였으며, 연골세포에 특이적으로 염색되는 Safranine O 염색으로 DTOPV 조건에서 더 붉게 염색됨을 관찰하였다. 또한 연골세포 특이적인 유전자인 Type II collage이 DTOPV 조건에서 더 강하게 발현되는 것을 확인함으로써 TCPS보다 DTOPV에서 연골세포로 분화가 향상된 것을 알 수 있었다. 따라서 자외선이 조사된 생체 친화성 필름 조성물인 DTOPV을 이용한 경우에 일반 배양용기보다 빠르게 연골분화가 이루어짐을 알 수 있었다. 결론적으로 향후 조직공학 분야에서 DTOPV가 중간엽줄기세포의 효과적인 연골분화 물질로서 활용될 수 있는 가능성을 확인 하였으며, 더 나아가 약물 스크리닝과 같은 진단분야에 활용될 수 있음을 알 수 있었다.

Keywords

References

  1. Caplan Al. The mesengenic process. Clin Plast Surg. 1994,21:429-435.
  2. Cho H, Kim E. Highly fluorescent and photochromic diarylethene oligomer bridged by p-phenylenevinylene. Macromolecules. 2002,35:8684-8687. https://doi.org/10.1021/ma025576i
  3. Cho H-K. Isolation and characterization of cells from human adipose tissue developing into osteoblast and adipocyte. Korean J Clin Lab Sci. 2008,40:106-112.
  4. Djouad F, Mrugala D, Noel D, Jorgensen C. Engineered mesenchymal stem cells for cartilage repair. Regen Med. 2006,1:529-537. https://doi.org/10.2217/17460751.1.4.529
  5. Friedenstein AJ, Piatetzky-shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966,16:381-390.
  6. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002,418:41-49. https://doi.org/10.1038/nature00870
  7. Jiao YP, Cui FZ. Surface modification of polyester biomaterials for tissue engineering. Biomed Mater. 2007,2:R24-37. https://doi.org/10.1088/1748-6041/2/4/R02
  8. Kim H-S, Heo JS, You J, Park T, Choi Y, Kim E, et al. Fast and efficient isolation of mouse bone marrow-derived mesenchymal stem cells by using a biocompatible polymer. Tissue engineering and regenerative medicine. 2010,4:443-451.
  9. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol. 2010,188:82-97. https://doi.org/10.1111/j.1469-8137.2010.03374.x
  10. Mitchell SA, Davidson MR, Bradley RH. Improved cellular adhesion to acetone plasma modified polystyrene surfaces. J Colloid Interface Sci. 2005,1:122-129.
  11. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003,24:4353-4364. https://doi.org/10.1016/S0142-9612(03)00339-9
  12. Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005,310:1135-1138. https://doi.org/10.1126/science.1106587
  13. Wang W, Itaka K, Ohba S, Nishiyama N, Chung UI, Yamasaki Y, et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials. 2009,30:2705-2715. https://doi.org/10.1016/j.biomaterials.2009.01.030
  14. Yoo J, Kwon T, Sarwade BD, Kim Y, Kim E. Multistate fluorescence switching of s-triazine-bridged p-phenylene vinylene polymers. Appl Phys Lett. 2007,91: 241107-1-241107-3. https://doi.org/10.1063/1.2821308
  15. You J, Heo JS, Lee J, Kim H-S, Kim HO, Kim E. A fluorescent polymer for patterning of mesenchymal stem cells. Macromolecules. 2009,42:3326-3332. https://doi.org/10.1021/ma802722q
  16. You J, Raghunathan VK, Son KJ, Patel D, Hague A, Murphy CJ, et al. Impact of nanotopography, heparin hydrogel microstructures, and encapsulated fibroblasts on phenotype of primary hepatocytes. ACS Appl Mater Interfaces. 2015, 17;7(23):12299-12308. https://doi.org/10.1021/am504614e
  17. You J, Shin DS, Patel D, Gao Y, Revzin A. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes. Adv Healthc Mater. 2014,3:126-132. https://doi.org/10.1002/adhm.201300054

Cited by

  1. Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy vol.50, pp.4, 2015, https://doi.org/10.15324/kjcls.2018.50.4.391