DOI QR코드

DOI QR Code

자연스러운 지형 생성을 위한 침식 시뮬레이션

Creation of Natural Terrain by Erosion Simulation

  • 한영덕 (우석대학교 정보보안학과)
  • 심사 : 2015.12.18
  • 발행 : 2015.12.20

초록

지형에 대한 기존의 침식 시뮬레이션은 주로 소규모의 지형 변화에 초점을 맞추고 있다. 이 논문에서는 물에 의한 침식과 열적 침식과정을 결합하여 강의 네트워크와 산들로 이루어진 자연스러운 대규모의 지형을 형성하는 방법을 제안한다. 물의 흐름에는 shallow water 시뮬레이션의 파이프 모델을 사용하며, 강물의 줄기가 쉽게 형성되게 하기 위해 속도에 의존하는 침식을, 강줄기 주변에 V자형 골짜기가 생성되게 하기 위해 열적 침식을 적용한다. 시뮬레이션 결과 $K_c$(퇴적물 수용상수)와 $K_v$(속도의존 침식강도)의 값이 적당한 범위에 있을 때만 목적한 모양의 지형이 생성되며, 이렇게 생성된 대표적인 자연스러운 모양의 지형을 예시한다. 또한 기존의 열적 침식 방법의 개선과 $K_c$가 큰 값일 때 발생하는 문제점을 해결할 방안을 제시한다.

Existing hydraulic terrain erosion simulations mainly focus on small scale terrain deformations. In this paper, we propose a simulation method combining hydraulic terrain erosion and thermal erosion, by which a natural large scale terrain of mountainous regions with river networks can be created. For water movement we use the pipe model of shallow water simulation, and for the easy formation of watercourse we use velocity dependent erosion, also we apply thermal erosion for the formation of V-form slopes in the vicinity of stream lines. As a result, we can obtain good natural shaped terrains for certain ranges of $K_c$(sediment capacity constant) and $K_v$(velocity dependent erosion strength) values. Also we present improved thermal erosion method, and suggest a way to avoid problems caused by large $K_c$value.

키워드

참고문헌

  1. Mandelbrot B. B., "The Fractal Geometry of Nature", W.H. Freeman and Company, 1983.
  2. I. S. Baek, K. H. Um, K. E. Cho, "A 3D Terrain Reconstruction System using Navigation Information and Realtime-Updated Terrain Data", Journal of Korea Game Society, Vol. 10, No. 6, pp. 157-168, 2010.
  3. I. W. Jo, E. S. Lee, B. S. Shin, "Terrain Rendering Using Vertex Cohesion Map", Journal of Korea Game Society, Vol. 11, No. 1, pp. 131-138, 2011.
  4. Olsen, J., "Realtime Procedural Terrain Generation", Technical Report, University of Southern Denmark, 2004.
  5. R. M. Smelik, K. J. de Kraker, S. A. Groenewegen, T. Tutenel and R. Bidarra "A Survey of Procedural Methods for Terrain Modelling", Proceedings of the CASA Workshop on 3D Advanced Media In Gaming And Simulation, 2009.
  6. R. M. Smelik, T. Tutenel, R. Bidarra, B. Benes, "A survey on procedural modelling for virtual worlds", Computer Graphics Forum Vol. 33 No. 6, pp. 31-50, 2014. https://doi.org/10.1111/cgf.12276
  7. Zhou H., Sun J., Turk G., Rehg J. M., "Terrain synthesis from digital elevation models", IEEE Transactions on Visualization and Computer Graphics, Vol. 13, No. 4, pp. 834-848. 2007. https://doi.org/10.1109/TVCG.2007.1027
  8. Hnaidi, H., Guerin, E., Akkouche, S., Peytavie, A., and Galin, E., "Feature based terrain generation using diffusion equation", In Computer Graphics Forum: Proceedings of Pacific Graphics, Vol. 29, No. 7, pp. 2179-2186, 2010.
  9. Doran J., Parberry I., "Controlled procedural terrain generation using software agents", IEEE Transactions on Computational Intelligence and AI in Games 2, 2, pp. 111-119, 2010. https://doi.org/10.1109/TCIAIG.2010.2049020
  10. Belhadj F., Audibert P., "Modeling landscapes with ridges and rivers: Bottom up approach", In GRAPHITE '05: Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, ACM, pp. 447-450, 2005.
  11. Genevaux J.D., Galin E., Guerin E., Peytavie A., Benes B., "Terrain generation using procedural models based on hydrology", ACM Transactions on Graphics 32.4, 4, 2013.
  12. J. O'Brien and J. K. Hodgins, "Dynamic simulation of splashing fluids", In Proceedings of Computer Animation'95, pp. 198-205, 1995.
  13. Chiba N., Muraoka K., Fujita K., "An erosion model based on velocity fields for the visual simulation of mountain scenery", The Journal of Visualization and Computer Animation, Vol. 9, No. 4, pp. 185-194, 1998. https://doi.org/10.1002/(SICI)1099-1778(1998100)9:4<185::AID-VIS178>3.0.CO;2-2
  14. Mei X., Decaudin P., Hu B. G., "Fast hydraulic erosion simulation and visualization on GPU", In Proc. of Pacific Graphics, pp. 47-56, 2007.
  15. Stava O., Benes B., Brisbin M., Krivanek J., "Interactive Terrain Modeling Using Hydraulic Erosion", Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation pp. 201-210, 2008.
  16. Musgrave F. K., Kolb C. E., Mace R. S., "The synthesis and rendering of eroded fractal terrains", In Proc. of SIGGRAPH '89, pp. 41-50, 1989.
  17. Kelley A. D., Malin M. C., Nielson G. M., "Terrain simulation using a model of stream erosion", Vol. 22, No. 4, pp. 263-268, ACM, 1988. https://doi.org/10.1145/378456.378519
  18. Prusinkiewicz P., Hammel M., "A fractal model of mountains with rivers", In Proc. of Graphics Interface, Vol. 93, pp. 174-180, 1993.
  19. Nagashima K., "Computer generation of eroded valley and mountain terrains", The Visual Computer, Vol. 13, No. 9, pp. 456-464, 1997. https://doi.org/10.1007/s003710050117
  20. B. Benes and R. Forsbach, "Visual simulation of hydraulic erosion", Journal of WSCG, Vol. 10, pp. 79-86, 2002.
  21. B. Benes, "Real time erosion using shallow water simulation", VRIPHYS, pp. 43-50, 2007.
  22. Green, W.H. and G. Ampt, "Studies of soil physics, part I-the flow of air and water through soils.", J. Ag. Sci. 4:1-24, 1911. https://doi.org/10.1017/S0021859600001441