References
- C. H. Moon, "Sailing of research group on floating architecture," Journal of the Architectural Institute of Korea, vol. 55, no. 09, pp. 14-19, 2011 (in Korean).
- H. S. Lee, C. H. Moon, and Y. H. Kang, "An analysis of market situation and industry trend in floating architecture," Proceedings of the Korean Institute of Navigation and Port Research Conference, pp. 141-144, 2009 (in Korean).
- B. Kim, C. H. Lee, J. H. Koo, and K. I. Hwang, " Performance evaluation of types of sea water heat exchanger for floating architecture," Proceedings of the Korean Institute of Navigation and Port Research Conference, pp. 287-288, 2013 (in Korean).
- K. I. Hwang and Y. H. Sim, "CFD analysis on performance evaluation of sea water heat exchanger in floating architecture," Proceedings of the Korean Society of Marine Engineering, pp. 211, 2014 (in Korean).
- K. C. Kim and S. Lee, "A new method to convert into seawater heat for the indoor air-conditioning resource," Journal of the Korean Society of Marine Engineering, vol. 29, no. 08, pp. 883-890, 2005 (in Korean).
- K. C. Kim, A Study on Heat Gain from Seawater for Cooling of Buildings, Ph.D. Dissertation, Department of Architectural Engineering, Dong-Eui University, Korea, 2006 (in Korean).
- H. J. Kim, H. S. Lee, J. I. Yoon, C. H. Son, and Y, K. Jung, "A numerical study on heat transfer and pressure drop of plate heat exchanger using at seawater air conditioning with the variation of channel spaces," Journal of the Korean Society of Marine Engineering, vol. 38, no. 06, pp. 704-709, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.6.704
- Y. W. Lee, Y. Y. Kim, and S. K, Song, "Recent floating buildings and design methods," Journal of the Wind Engineering Institute of Korea, vol. 16, no. 04, pp. 79-87, 2012 (in Korean).
- J. Yang and W. Liu, "Numerical investigation on a novel shell-and-tube heat exchanger with plate baffles and experimental validation," Journal of the Energy Conversion and Management, vol. 101, pp. 689-696, 2015. https://doi.org/10.1016/j.enconman.2015.05.066
- A. N. Asadolahi, R. Gupta, S. S. Y. Leung, D. F. Fletcher, and B. S. Haynes, "Validation of a CFD model of taylor flow hydrodynamics and heat transfer," Journal of the Chemical Engineering Science, vol. 69, no. 1, pp. 541-552, 2012. https://doi.org/10.1016/j.ces.2011.11.017
- L. Zhao and J. K. Yoon, "A study on heat transfer and pressure drop characteristics of plain fin-tube heat exchanger using CFD analysis," Journal of the Korean Society of Marine Engineering, vol. 38, no. 06, pp. 615-624, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.6.615
- R. R. Hou, H. S. Park, J. K. Yoon, and J. H. Lim, "Numerical analysis for heat transfer and pressure drop characteristics of "Shell-tube" heat exchanger with various baffle factor," Journal of the Korean Society of Marine Engineering, vol. 38, no. 04, pp. 367-375, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.4.367
- S. H. Kwag, "Numerical analysis of turbulent flows in the helically coiled pipes of heat transfer," Journal of the Korean Society of Marine Engineering, vol. 37, no. 08, pp. 905-910, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.8.905
- F. Incropera and D. Dewitt, Introduction to Heat Transfer, 4th ed., Wiley, 2001.
- Yokogawa Electric Corporation, MX100/MW100 Data Acquisition Unit Installation and Connection Guide, 2005.
- Daum, http://map.daum.net, Accessed July 15, 2015.