DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages

LPS 자극 RAW 264.7 대식세포에 있어서 아로니아 열매 열수 추출물의 항염증 효과

  • Yang, Hui (Department of Microbiology, College of Medicine, Konyang University) ;
  • Oh, Kwang-Hoon (Department of Physical Education, College of Education, Kongju National University) ;
  • Yoo, Yung Choon (Department of Microbiology, College of Medicine, Konyang University)
  • 양혜 (건양대학교 의과대학 미생물학교실) ;
  • 오광훈 (공주대학교 사범대학 체육교육과) ;
  • 유영춘 (건양대학교 의과대학 미생물학교실)
  • Received : 2014.09.16
  • Accepted : 2014.11.20
  • Published : 2015.01.31

Abstract

In this study, anti-inflammatory activity of hot water extract of Aronia fruits (AF-H) was examined. Pre-treatment with AF-H significantly inhibited production of nitric oxide (NO) and prostaglandin E-2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The inhibitory effect of AF-H on LPS-induced inflammation was also confirmed by down-regulation of inducible NO synthase as well as cyclooxygenase-2 protein expression. Furthermore, treatment with AF-H significantly inhibited secretion of inflammatory cytokines such as tumor-necrosis $factor-{\alpha}$ and interleukin-6. Signal transduction pathway studies further indicated that AF-H inhibited LPS-induced activation of nuclear $factor-{\kappa}B$, but not mitogen-activated protein kinase. Treatment with AF-H also partially protected against LPS-induced lethal shock in C57BL/6 mice, although its effect was not statistically significant. These results suggest that AF-H is a more promising nutraceutical or medicinal agent for inhibition of LPS-induced inflammation or inflammation-related diseases.

본 연구에서는 아로니아 열매 추출물(AF-H)의 항염증 활성을 조사하기 위하여 LPS 자극에 의해 유도된 RAW 264.7 macrophage의 염증반응에서 AF-H의 염증매개인자 및 염증성 사이토카인 분비 억제활성과 이에 관련된 세포 내 작용기전 해석을 수행하였다. LPS($1{\mu}g/mL$)로 RAW 264.7 세포를 24시간 자극하는 염증모델에서 세포독성을 나타내지 않는 안전한 농도의 AF-H($0{\sim}500{\mu}g/mL$)를 LPS 처리 12시간 전에 처리하여 NO 및 PGE2의 분비 억제활성을 측정하였다. 그 결과 AF-H 처리에 의해 NO와 PGE2의 생성이 처리 농도에 의존하여 유의하게 억제되었으며, 이들 염증매개인자의 생합성 효소인 iNOS 및 COX-2의 세포 내 발현도 현저하게 억제되는 것으로 관찰되었다. 또한 AF-H의 처리에 의해 염증성 사이토카인인 $TNF-{\alpha}$와 IL-6의 분비도 유의하게 억제되는 것으로 확인하였다. 이러한 AF-H에 의한 항염증 활성의 세포 내 기전을 해석하기 위하여 LPS 자극에 의해 유도되는 MAPK와 $NF-{\kappa}B$ 전사인자의 활성화에 대한 억제 효과를 조사하였다. 그 결과 AF-H는 MAPK의 인산화에는 별다른 영향을 미치지 않고 $NF-{\kappa}B$의 활성화($I{\kappa}B$ 인산화)를 효과적으로 억제하는 것으로 확인되었다. 한편 LPS에 의한 in vivo 패혈증 모델에서 AF-H에 의한 패혈증 억제활성을 측정한 결과 비록 통계학적으로 유의하지는 않으나 AF-H 투여에 의해 생존율과 50% 사망률의 연장 효과가 관찰되었다. 이들 결과를 종합해 보면 아로니아 열매 열수추출물은 $NF-{\kappa}B$의 활성화 억제를 통해 NO, PGE2, $TNF-{\alpha}$ 및 IL-6 등의 염증매개인자와 사이토카인의 생성을 억제하는 항염증 활성을 지니는 것으로 확인되었다.

Keywords

References

  1. Tanaka T, Tanaka A. 2001. Chemical components and characteristics of black chokeberry. J Jpn Soc Food Sci Technol 48: 606-610. https://doi.org/10.3136/nskkk.48.606
  2. Hudec J, Bakosy D, Mravec D, Kobida L, Burdovva L, Turianica I, Hlusyek J. 2006. Content of phenolic compounds and free polyamines in black chokeberry (Aronia melano carpa) after application of polyamine biosynthesis regulators. 2006. J Agric Food Chem 54: 3625-3628. https://doi.org/10.1021/jf060299q
  3. Sueiro L, Yousef GG, Seigler D, DE Mejia EG, Grace MH, Lila MA. 2006. Chemopreventive potential of flavonoid extracts from plantation-bred and wild Aronia melanocarpa (black chokeberry) fruits. J Food Sci 71: C480-C488. https://doi.org/10.1111/j.1750-3841.2006.00152.x
  4. Ho GT, Braunlich M, Austarheim I, Wangensteen H, Malterud KE, Slimestad R, Barsett H. 2014. Immunomodulating activity of Aronia melanocarpa polyphenols. Int J Mol Sci 15: 11626-11636. https://doi.org/10.3390/ijms150711626
  5. Kokotkiewicz A, Jaremicz Z, Luczkiewicz M. 2010. Aronia plant: a review of traditional use, biological activities, and prospectives for modern medicine. J Med Food 13: 255-269. https://doi.org/10.1089/jmf.2009.0062
  6. Niedworok J, Jankowska B, Kowalczyk E, Charyk K, Kubat Z. 1997. Antiulcer activity of anthocyanin from Aronia melanocarpa Elliot. Herba Polonica 43: 222-227.
  7. Ohgami K, Ilieva I, Shiratori K, Koyama Y, Jin XH, Yoshida K, Kase S, Kitaichi N, Suzuki Y, Tanaka T, Ohno S. 2005. Anti-inflammatory effect of aronia extract on rat endotoxin- induced uveitis. Invest Ophthalmol Vis Sci 46: 275-281. https://doi.org/10.1167/iovs.04-0715
  8. Han S, Lee JH, Kim C, Nam D, Chung WS, Lee SG, Ahn KS, Cho SK, Cho M, Ahn KS. 2013. Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-$\kappa{B}$ B activation. Immunopharmacol Immunotoxicol 35: 34-42. https://doi.org/10.3109/08923973.2012.736522
  9. Storck M, Schilling M, Burkhardt K, Prestel R, Abendroth D, Hammer C. 1994. Production of proinflammatory cytokines and adhesion molecules in ex-vivo xenogeneic kidney perfusion. Transpl Int 7 (Suppl 1): S647-S649. https://doi.org/10.1111/j.1432-2277.1994.tb01464.x
  10. Moncada S, Palmer RM, Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109-142.
  11. Neuman MG, Nanau RM. 2011. In vitro anti-inflammatory effects of hyaluronic acid in ethanol-induced damage in skin cells. J Pharm Pharm Sci 14: 425-437. https://doi.org/10.18433/J3QS3J
  12. Shao DZ, Lin M. 2008. Platonin inhibits LPS-induced NFkappaB by preventing activation of Akt and IKKbeta in human PBMC. Inflamm Res 57: 601-606. https://doi.org/10.1007/s00011-008-8053-2
  13. Song C, Zhang Y, Dong Y. 2013. Acute and subacute IL-1$\beta$ administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. J Neuroinflammation 10: 59. https://doi.org/10.1186/1742-2094-10-59
  14. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178: 749-754. https://doi.org/10.1084/jem.178.2.749
  15. Weisz A, Cicatiello L, Esumi H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NGmonomethyl- L-arginine. Biochem J 316: 209-215. https://doi.org/10.1042/bj3160209
  16. Tsai ML, Lin CC, Lin WC, Yang CH. 2011. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs. Biosci Biotechnol Biochem 75: 1977-1983. https://doi.org/10.1271/bbb.110377
  17. Yoon WJ, Kim SS, Oh TH, Lee NH, Hyun CG. 2009. Abies koreana essential oil inhibits drug-resistant skin pathogen growth and LPS-induced inflammatory effects of murine macrophage. Lipids 44: 471-476. https://doi.org/10.1007/s11745-009-3297-3
  18. Yoon WJ, Kim SS, Oh TH, Lee NH, Hyun CG. 2009. Cryptomeria japonica essential oil inhibits the growth of drug-resistant skin pathogens and LPS-induced nitric oxide and pro-inflammatory cytokine production. Pol J Microbiol 58: 61-68.
  19. Lee DH, Sohn DS, Cho DY, Kim BJ, Lim YY, Kim YH. 2010. Anti-inflammatory and anti-oxidant effects of Sophora flavescens root extraction in lipopolysaccharide activated Raw 264.7 cells. Korean J Med Mycol 15: 39-50.
  20. Kwak JH, Kim IH. 1974. Studies on the anti-inflammatory activity of Caragana chamlagu roots. Kor J Pharmacogn 5: 179-184.
  21. Johnson GL, Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912. https://doi.org/10.1126/science.1072682
  22. Robinson MJ, Cobb MH. 1997. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9: 180-186. https://doi.org/10.1016/S0955-0674(97)80061-0
  23. Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK. 2005. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50: 235-246. https://doi.org/10.1002/glia.20173
  24. Majdalawieh A, Ro HS. 2010. Regulation of $I{\kappa}B{\alpha}$ function and NF-$\kappa{B}$ B signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010: 823821.

Cited by

  1. Quality Characteristics of Sikhye made with Berries vol.25, pp.6, 2015, https://doi.org/10.17495/easdl.2015.12.25.6.1007
  2. Antioxidant and Anti-inflammatory Effects of Extracts from the Flowers of Weigela subsessilis on RAW 264.7 Macrophages vol.26, pp.3, 2016, https://doi.org/10.5352/JLS.2016.26.3.338
  3. Quality Characteristics and Antioxidant Activity of Sulgidduk Prepared by Addition of Aronia Powder (Aronia melanocarpa) vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.452
  4. Anti-oxidant and Anti-inflammatory Activities of Barley Sprout Extract vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.537
  5. Quality characteristics and antioxidant activities ofaronia jams added with apple vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.180
  6. Anti-inflammatory effect of barley leaf ethanol extract in LPS-stimulated RAW264.7 macrophage vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.735
  7. 아로니아 분말을 첨가한 쿠키의 품질특성 및 항산화 활성 vol.22, pp.5, 2016, https://doi.org/10.20878/cshr.2016.22.5.014
  8. 채진목 에탄올 추출물의 항염증 효과 검증 vol.43, pp.1, 2015, https://doi.org/10.15230/scsk.2017.43.1.19
  9. LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과 vol.24, pp.8, 2015, https://doi.org/10.11002/kjfp.2017.24.8.1149
  10. Efficacy of Cosmetic Materials Using Aronia melanocarpa Leaf Extracts vol.16, pp.2, 2015, https://doi.org/10.20402/ajbc.2017.0166
  11. LPS로 유도된 RAW264.7 대식세포에 대한 헛개나무(Hovenia dulcis) 추출물의 항염증 효과 vol.31, pp.5, 2015, https://doi.org/10.7732/kjpr.2018.31.5.466
  12. 아로니아 부위별 주요 성분 정량 및 생리활성 평가 vol.52, pp.3, 2015, https://doi.org/10.9721/kjfst.2020.52.3.226
  13. Evaluation of the Biological Activities of Berries as an Inner Beauty Ingredient vol.18, pp.3, 2020, https://doi.org/10.20402/ajbc.2020.0051
  14. Anthocyanin-Rich Aronia Berry Extract Mitigates High-Fat and High-Sucrose Diet-Induced Adipose Tissue Inflammation by Inhibiting Nuclear Factor- κ B Activation vol.24, pp.6, 2015, https://doi.org/10.1089/jmf.2020.0127