DOI QR코드

DOI QR Code

Feasibility Study of Pressure Letdown Energy Recovery from the Natural Gas Pressure Reduction Stations in South Korea

한국의 천연가스 도시정압기지에서 감압에너지 회수에 대한 타당성 연구

  • Yoo, Han Bit (Dept. of Chemical Engineering, University of Seoul) ;
  • Hong, Seongho (Dept. of Energy & Environment Engineering, Silla University) ;
  • Kim, Hyo (Dept. of Chemical Engineering, University of Seoul)
  • 유한빛 (서울시립대학교 화학공학과) ;
  • 홍성호 (신라대학교 에너지환경공학과) ;
  • 김효 (서울시립대학교 화학공학과)
  • Received : 2015.04.17
  • Accepted : 2015.05.29
  • Published : 2015.06.28

Abstract

Almost all of the natural gas consumed in South Korea is compressed into very high pressure for the transportation through the underground pipelines, then reduced in pressure regulation stations before delivery to the consumer. For pressure reduction, expansion valves have been used due to the simple and effective installation, but recover none of the energy in the gas during compression. Hence, turbo-expanders are proposed instead of the valves to accomplish the same pressure letdown function and recover some of the compression energy in the form of shaft work converting into electric powers. Here we have theoretically calculated the electric powers at the pressure reduction from 68.7 bar to 23 bar (which are the average values taken at the inlet and outlet points of the expansion valve in medium-pressure regulation stations) according to the inlet conditions of temperature and flow rate. The natural gas is considered as two cases of a pure methane and the mixture of hydrocarbons with a very small amount of nitrogen, and the Peng-Robinson equation of state is employed for the calculation of required thermodynamic properties. The electric energy is recovered as much as 1596 MW(methane) and 1567 MW(mixture) based on the total supply of natural gas in 2013.

한국에서 소비되는 대부분의 천연가스는 배관을 통한 수송을 위하여 높은 압력으로 압축되고, 수요처에 공급되기 전에 정압기지에서 다시 감압된다. 감압과정에서 간단하고 효율적인 설치를 위해 팽창밸브가 사용되었으나 팽창밸브에서는 압축을 통해 회수되는 에너지가 없다. 따라서 팽창밸브와 동일한 감압 기능을 수행하면서 압력에너지를 축일로 회수하여 전력을 생산할 수 있는 터보팽창기가 팽창밸브의 대안으로 제시되었다. 본 연구에서는 중압 정압기지에서 팽창밸브의 평균 입구, 출구 압력조건인 68.7 bar에서 23 bar로 감압될 때 입구의 온도, 유량조건에 따라서 생산 가능한 전력을 이론적으로 계산하였다. Peng-Robinson 상태방정식을 이용하여 천연가스를 순수한 메탄으로 고려한 경우와 소량의 질소와 탄화수소의 혼합물로 고려한 경우에 대한 열역학적 물성을 계산하였다. 2013년 공급량을 기준으로 터보팽창기 도입을 통해 회수 가능한 이론적인 최대 전력생산량은 순수한 메탄의 경우 1596 MW, 혼합물의 경우 1567 MW로 추산되었다.

Keywords

References

  1. Mirandola, A., and Minca, L., "Energy Recovery by Expansion of High Pressure Natural gas", Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, 1, 16-21, (1986).
  2. Hedman, B. A., "Waste energy recovery opportunities for interstate natural gas pipelines", Interstate Natural Gas Association of America, (2008).
  3. Howard, C., Oosthuizen, P., and Peppley, B., "An investigation of the performance of a hybrid turboexpander fuel cell system for power recovery at natural gas pressure reduction stations", Applied Thermal Engineering, 31(13), 2165-2170, (2011). https://doi.org/10.1016/j.applthermaleng.2011.04.023
  4. Rahman, M. M., "Power generation from pressure reduction in the natural gas supply chain in Bangladesh", Journal of Mechanical Engineering, 41(2), 89-95, (2010).
  5. Ardali, E. K., and Heybatian, E., "Energy Regeneration in Natural Gas Pressure Reduction Stations by Use of Gas Turbo Expander; Evaluation of Available Potential in Iran", Proceedings 24th world gas conference, 5-9, (2009).
  6. Yoo, H. B., Kim, H., "Electricity Generation by Using Turbo-Expander in Natural Gas Pressure Reduction Stations in Republic of Korea", Proceedings of the Annual Fall Meeting of KIChE 2014, 273, (2014).
  7. Maric, I., "The Joule-Thomson effect in natural gas flow-rate measurements", Flow Measurement and Instrumentation, 16, 387-395, (2005). https://doi.org/10.1016/j.flowmeasinst.2005.04.006
  8. Fattah, K. A. A., "Evaluation of Empirical Correlations for Natural Gas Hydrate Predictions", Oil and Gas Business, 55(11), 467-472, (2004).
  9. Peng, D. Y., and Robinson, D. B., "A New Two-Constant Equation of State", Ind. Eng. Chem. Fundamen., 15(1), 59-64, (1976). https://doi.org/10.1021/i160057a011
  10. Smith, J. M., Van Ness, H. C., Abbott, M. M., Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, New York, (2005).
  11. Sandler, S. I., Chemical and Engineering Thermodynamics, 3rd ed., Wiley, New Jersey, (1998).