DOI QR코드

DOI QR Code

Numerical and Experimental Study on Mechanical Properties of Gelatin as Substitute for Brain Tissue

뇌 조직의 기계적 물성에 관한 젤라틴을 이용한 수치해석 및 실험적 연구

  • Bahn, Yong (Dept. of Mechanical Engineering, Dankook Univ.) ;
  • Choi, Deok-Kee (Dept. of Mechanical Engineering, Dankook Univ.)
  • 반용 (단국대학교 기계공학과) ;
  • 최덕기 (단국대학교 기계공학과)
  • Received : 2014.07.09
  • Accepted : 2014.11.06
  • Published : 2015.02.01

Abstract

The mechanical properties of living tissues have been major subjects of interest in biomechanics. In particular, the characteristics of very soft materials such as the brain have not been fully understood because experiments are often severely limited by ethical guidelines. There are increasing demands for studies on remote medical operations using robots. We conducted compression tests on brain-like specimens made of gelatin to find substitutes with the mechanical properties of brain tissues. Using a finite element analysis, we compared our experimental data with existing data on the brain in order to establish material models for brain tissues. We found that our substitute models for brain tissues effectively simulated their mechanical behaviors.

생체 조직에 대한 물리적 특성은 생체공학의 주된 관심사다. 특히 뇌 조직과 같은 매우 무른 생체 조직의 특성은 아직까지 정확히 밝혀지지 않고 있는 실정이다. 이는 윤리적, 사회적인 문제로 실험이 매우 제한적이고 어렵기 때문이다. 하지만 의료 응용분야에서의 로봇 수술이 발달함에 따라 이런 매우 무른 조직에 대한 정확한 특성이 요구되어지고 있는 실정이다. 이에 본 논문에서는 뇌 조직과 유사한 거동을 보이는 젤라틴으로 시편을 제작하여 기존연구와 비교하고 유사한 거동을 보이는 시편 제작조건을 찾아내고 이 조건으로 만들어진 시편을 이용하여 반복적인 실험을 실시하였다. 이렇게 얻어진 실험 데이터를 이용하여 초탄성 모델에 적용시켜 재료 상수들을 찾고 이를 FE 해석에 적용시켜 실험데이터와 비교하여 일치함을 보였다.

Keywords

References

  1. Miller, K. and Chinzei, K., 1997, "Constitutive Modelling of Brain Tissue: Experiment and Theory," J. Biomechanics, Vol. 30, No. 11/12, pp. 1115-1121. https://doi.org/10.1016/S0021-9290(97)00092-4
  2. Miller, K. and Chinzei, K., 2002, "Mechanical Properties of Brain Tissue in Tension," J. Biomechanics, Vol. 35, pp. 483-490. https://doi.org/10.1016/S0021-9290(01)00234-2
  3. Velardi, F., Fraternali, F. and Angelillo, M, 2006. "Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue," Biomechanics and Modeling in Mechanobiology, Vol. 5, pp. 53-61. https://doi.org/10.1007/s10237-005-0007-9
  4. Rashid, B., Destrade, M. and Gilchrist, M. D., 2012, "Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 10, pp. 23-38. https://doi.org/10.1016/j.jmbbm.2012.01.022
  5. Rashid, B., Destrade, M. and Gilchrist, M. D., 2012, "Temperature Effects on Brain Tissue in Compression," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 14, pp. 113-118. https://doi.org/10.1016/j.jmbbm.2012.04.005
  6. Rashid, B., Destrade, M. and Gilchrist, M. D., 2012, "Inhomogeneous Deformation of Brain Tissue During Tension Test," Computational Materials Science, Vol. 64, pp. 295-300. https://doi.org/10.1016/j.commatsci.2012.05.030
  7. Seung, S. M., Kang, B. J., Park, S. H., Park, J. O. and Kim, K. H., 2009, "Teleoperation Surgical Robot System for Brain Surgery," Proceedings of the KSME Dynamics and Control Division 2009 Spring Conference, pp. 232-237.
  8. Basdoga, C., Ho, C. H. and Srinivasan, M. A., 2001, "Virtual Environments for Medical Training: Graphical and Haptic Simulation of Laparoscopic Commen Bile Duct Exploration," IEEE-ASME Transactions on Mechatronics, Vol. 6, No. 3, pp. 269-285. https://doi.org/10.1109/3516.951365
  9. Tendick, F., Downes, M., Goktekin, T., Cavusoglu, M. C., Feygin, D., Wu, X., Eyal, R., Hegarty, M. and Way, L. W., 2000, "A Virtual Environment Testbed for Training Laparoscopic Surgical Skills," Presence-Teleoperators and Virtual Environments, Vol. 9, No. 3, pp. 236-255. https://doi.org/10.1162/105474600566772
  10. Kim, J., 2007, "Virtual Encironments for Medical Training: Soft Tissue Modeling," Proceedings of the KSME 2007 Fall Annual Meeting, pp. 1650-1655
  11. Estes, M. S. and McElhaney, J. H., 1970, "Response of Brain Tissue of Compressive loading," ASME Paper No. 70-BHF-13.
  12. Mendis, K. K., Stalnaker, R. L. and Advani, S. H., 1995, "A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue," Trans. ASME Journal of Biomechanical Engineering, Vol. 117, pp. 279-285. https://doi.org/10.1115/1.2794182
  13. Rashid, B., Destrade, M. and Gilchrist, M. D., 2013, "Influence of Preservation Temperature on the Measured Mechanical Properties of Brain Tissue," J. of Biomechanics, Vol. 46, pp. 1276-1281. https://doi.org/10.1016/j.jbiomech.2013.02.014
  14. Cheng, J., Howard, M. R., 2010, "Study of an Infant Brain Subjected to Periodic Motion via a Custom Experimental Apparatus Design and Finite Element Modelling," J. of Biomechanics, Vol. 43, pp. 2887-2896. https://doi.org/10.1016/j.jbiomech.2010.07.023
  15. Jiangyue, Z., Narayan, Y., Frank A. P., Yabo, G., Thomas, A. G., 2007, "Experimental Model for Civilian Ballistic Brain Injury Biomechanics Quantification," J. of Biomechanics, Vol. 40, pp. 2341-2346. https://doi.org/10.1016/j.jbiomech.2006.10.021

Cited by

  1. Mechanical characterization of biological tissues: Experimental methods based on mathematical modeling vol.6, pp.3, 2016, https://doi.org/10.1007/s13534-016-0222-6
  2. A study on real-time stress calculation of soft tissues using digital image techniques vol.12, pp.1, 2017, https://doi.org/10.1299/jbse.16-00607