DOI QR코드

DOI QR Code

Nonthermal Sterilization of Pathogenic Escherichia coli by Intense Pulsed Light Using a Batch System

회분식 광펄스 처리에 의한 병원성 대장균의 비가열 살균

  • Received : 2014.10.01
  • Accepted : 2014.11.23
  • Published : 2015.02.28

Abstract

Intense pulsed light (IPL), a nonthermal technology, has attracted increasing interest as a food processing technology. However, its efficacy in inactivating microorganisms has not been evaluated thoroughly. In this study, we investigated the influence of IPL treatment on the inactivation of Escherichia coli O157:H7 depending on light intensity, treatment time, and pulse number. Increased light intensity from 500 V to 1,000 V, raised the inactivation rate at room temperature. At 1000 V, the cell numbers were reduced by 7.1 log cycles within 120 s. In addition, increased pulse number or decreased distance between the light source and sample surface also led to an increase in the inactivation rate. IPL exposure caused a significant increase in the absorption at 260 nm of the suspending agent used in our experiments. This indicates that IPL-treated cells were damaged, consequently releasing intracellular materials. The growth of IPL-irradiated cells were delayed by about 5 h. The degree of damage to the cells after IPL treatment was confimed by transmission electron microscopy.

광펄스 기술의 주요 공정 변수인 빛의 세기, 펄스 수, 광원과 시료사이의 거리에 따른 병원성 대장균의 사멸효과, 형태학적 변화와 세포의 손상 및 회복 여부를 알아보았다. 1,000 V, 5 pps, 7.9 cm에서 병원성 대장균을 광펄스 처리하였을 경우 처리시간이 증가함에 따라 사멸정도가 증가하였으며, 120초 처리하였을 때 약 7.1 log CFU/mL 감소하였고, 사멸속도는 $0.07s^{-1}$이었다. 같은 빛의 세기에서는 펄스수가 증가할수록 사멸정도가 증가하였으며, 램프와 시료의 거리가 가까울수록 사멸효과가 높았다. 광펄스 처리에 의한 미생물의 사멸은 세포막의 파괴에 의한 것으로 처리 시간이 증가함에 따라 세포내 물질의 외부 유출이 증가하며, 사멸되지 않은 세포라도 손상을 입어 정상적인 생육을 하지 못하는 것으로 보아 사멸이 물리적 손상 이외에의 생물학적 손상이 있는 것으로 판단된다. 세포의 물리적 손상 여부를 전자 현미경으로 살펴본 결과 광펄스 처리를 받은 세포는 세포막에 손상을 입어 세포내 물질의 유출이 일어난 것을 알 수 있었다.

Keywords

References

  1. Park JY, Na SY, Lee YJ. Present and future of non-thermal food processing technology. Food Sci. Ind. 43: 2-20 (2010)
  2. Dunn JE, Clark RW, Asmus JF, Pearlman JS, Boyerr K, Painchaud F. Methods for preservation of foodstuffs. U.S. Patent 4,871,559 (1989)
  3. Barbosa-Canovas GV, Gould GW, Innovations in Food Processing. CRC Press, London, UK. pp 1-11 (2000)
  4. Oms-Oliu G, Aguio-Aguayo I, Martin-Belloso O, Soliva-Fortuny R. Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biol. Tec. 56: 216-222 (2010) https://doi.org/10.1016/j.postharvbio.2009.12.011
  5. Gómez-Lopez VM, Devlieghere F, Bonduelle V, Debevere J. Factors affecting the inactivation of microorganisms by intense light pulses. J. Appl. Microbiol. 99: 46-470 (2005)
  6. Roverts P, Hope A. Virus inactivation by high intensity broad spectrum pulsed light. J. Virol. Methods 110: 61-65 (2003) https://doi.org/10.1016/S0166-0934(03)00098-3
  7. Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, McIlvaney L. Farish O. Pulsed-light inactivation of food-related microorganisms. Appl. Envrion. Microb. 65: 1312-1315 (1999)
  8. Marquenie D, Geeraerd AH, Lammertyn J, Soontjen C, Van Impe JE, Michiel CW, NicolaBM. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Int. J. Food Microbiol. 85: 185- 196 (2003) https://doi.org/10.1016/S0168-1605(02)00538-X
  9. Wekhof A. Disinfection with flash lamp. PDA J. Pharm. Sci. Tech. 54: 264-276 (2000)
  10. Hiramoto T. Method of sterilization. US Patent 4,464,336 (1984)
  11. Dunn JE, Ott T, Clark W. Pulsed-light treatment of food and packaging. Food Technol. 49: 95-98 (1996)
  12. Elmnasser N, Ritz M, Leroi F, Orange N. Bacterial inactivation using pulsed light. Acta Aliment. Hung. 36: 401-408 (2007)
  13. Cho HY, Shin JK, Song YA, Yoon SJ, Kim JM, Pyun YR. Nonthermal pasteurization of lactic acid bacteria by high intensity light pulse. Korean J. Food Sci. Technol. 34: 631-636 (2002)
  14. Kim BR, Kim AJ, Hong HJ, Shin JK. Sterilization of yeast isolated from makgeolli by intense pulsed light treatment in batch system. Food Eng. Prog. 17: 159-164 (2013) https://doi.org/10.13050/foodengprog.2013.17.2.159
  15. Dunn JE, Byshnell A, Ott T, Clark W. Pulsed white light food processing. Cereal Food World 42: 510-515 (1997)
  16. Marquenie D, Geeraerd AH, Lammertyn J, Soontjen C, Van Impe JE, Michiel CW, Nicolai BM. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Int. J. Food Microbiol. 85: 185- 196 (2003) https://doi.org/10.1016/S0168-1605(02)00538-X
  17. Izquier A, Gomez-Lopez VM. Modeling the pulsed light inactivation of microorganisms naturally occurring on vegetable substrates. Food Microbiol. 28: 1170-1174 (2011) https://doi.org/10.1016/j.fm.2011.03.010
  18. Xiong R, Xie G, Edmondson A, Sheard M. A mathematical model for bacterial inactivation. Int. J. Food Microbiol. 46: 45-55 (1999) https://doi.org/10.1016/S0168-1605(98)00172-X
  19. Yousef AE, Marth EH. Inactivation of Listeria monocytogenes by ultraviolet energy. J. Food Sci. 53: 571-573 (1988) https://doi.org/10.1111/j.1365-2621.1988.tb07759.x
  20. Food and Drug Administration. Kinetics of microbial inactivation for alternative food processing technologies. Available from: http://www.fda.gov/Food/FoodScienceResearch/SafePracticesfor- FoodProcesses/ucm100158.htm. Accessed Aug. 15, 2014.
  21. Environmental Protection Agency. Ultraviolet radiation. Alternative disinfectants and oxidants guidance manual. Available from : http://water.epa.gov/lawsregs/rulesregs/sdwa/mdbp/upload/2001_01_12_mdbp_alter_cover_al.pdf. Accessed Feb. 24, 2015.
  22. Gomez-Lopez V, Ragaert P, Debevere J, Devlieghere F. Pulsed light for food decontamination: a review. Trends Food Sci. Tech. 18: 464-473 (2007) https://doi.org/10.1016/j.tifs.2007.03.010
  23. Yaun BR, Summer SS, Eifert JD, Marcy JE. Inhibition of pathogens on fresh produce by ultraviolet energy. Int. J. Food Microbiol. 90: 1-8 (2002)
  24. Yaun BR, Summer SS, Eifert JD, Marcy JE. Response of Salmonella and Escherichia coli O157:H7 to UV energy. J. Food Protect. 66: 1071-1073 (2004)
  25. Jonathan MM, Rose MRM, Olag MB. Influence of treatment time and pulsed frequency on Salmonella enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juice treated by pulsed electric field. Int. J. Food Microbiol. 117: 192-200 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.04.009
  26. Luksiene Z, Gudelis V, Buchovec J, Raudeliuniene J. Advanced high-power pulsed light device to decontaminate food from pathogens: effects on Salmonella typhimurium viability in vitro. J. Appl. Microbiol. 103: 1545-1552 (2007) https://doi.org/10.1111/j.1365-2672.2007.03403.x
  27. Jayaram S, Castle GS, Margaritis A. Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses. Biotechnol. Bioeng. 40: 1412-1420 (1992) https://doi.org/10.1002/bit.260401116
  28. Korolczuk J, Mckeag JR, Fernandez JC, Baron F, Grosset N, Jeantet R. Effect of pulsed electric field processing parameters on Salmonella enteritidis inactivation. J. Food Eng. 75: 11-20 (2006) https://doi.org/10.1016/j.jfoodeng.2005.03.027
  29. Kim BR, Kim AJ, Shin JK. Effect of sterilization by intense pulsed light on radiation-resistant bacterium, Micrococcus roseus. Korean J. Food Sci. Technol. 45: 248-251 (2013) https://doi.org/10.9721/KJFST.2013.45.2.248
  30. Krishnamurthy K, Tewari JC, Irudayarai J, Demirci A. Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infra-red heating. Food Bioprocess Tech. 3: 93-104 (2010) https://doi.org/10.1007/s11947-008-0084-8
  31. Takeshita K, Shibato J, Sameshima T, Eukunaga S, Isobe S, Arihahara K, Itoh M. Damage of yeast cells induced by pulsed light irradiation. Int. J. Food. Microbiol. 85: 151-158 (2003) https://doi.org/10.1016/S0168-1605(02)00509-3
  32. Shigh RP, Yousef AE. Technical elements of new and emerging non-thermal food technologies. Available from: http://www.agrifoodgateway. com/sites/default/files/articles/technical_elements _new_emerging_non-thermal_food_technologies.pdf. Accessed Aug. 15, 2014.
  33. Cheigh CI, Park MH, Chung MS, Shin JK, Park YS. Comparison of intense pulsed light- and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157:H7. Food Control 25: 654-659 (2012) https://doi.org/10.1016/j.foodcont.2011.11.032
  34. Sharifi-Yazdi MK, Darghahi H. Inactivation of pathogenic bacteria using pulsed UV-light and its application in water disinfection and quality control. Acta Med. Iran. 44: 305-309 (2006)
  35. Silieman TA, Nicholson WL. Artificial and solar UV radiation induces strand breaks and cyclobutane dimer in Bacillus subtilis spore DNA. Appl. Environ. Microbiol. 66: 199-205 (2000) https://doi.org/10.1128/AEM.66.1.199-205.2000
  36. Wekhof A. Trompeter FJ, Franken O. Pulsed UV disintegration (PUVD): a new sterilization mechanism for packaging and broad medical-hospital applications. The First International Conference on Ultraviolet Technologies. June 14-16, Washington DC, USA (2001)
  37. Shin JK. Inactivation of Saccharomyces cerevisiae by high voltage pulsed electric fields. PhD thesis, Yonsei University, Seoul, Korea (2000)
  38. Scopes RK. Protein Purification: Principles and Practice. 3rd ed. Springer-Verlag, Heidelberger, Berlin, Germany. pp. 46-48 (1994)
  39. Min KC, Chon JI, Park SK, Cho NC, Jung SH, Yu HJ. Essential of Food Microbiology. Kwangmoongak, Paju, Korea. pp 149-176 (2013)
  40. Shin JK, Pyun YR. Inactivation of Lactobacillus plantarum by pulsed-microwave irradiation. J. Food Sci. 62: 163-166 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04391.x

Cited by

  1. Sterilization of Rapeseed Sprouts by Intense Pulsed Light Treatment vol.48, pp.1, 2016, https://doi.org/10.9721/KJFST.2016.48.1.36