DOI QR코드

DOI QR Code

Intra- and Extra-cellular Mechanisms of Saccharomyces cerevisiae Inactivation by High Voltage Pulsed Electric Fields Treatment

고전압 펄스 전기장에 의한 Saccharomyces cerevisiae의 세포내·외적 사멸 기작 연구

  • 이상재 (신라대학교 바이오식품소재학과) ;
  • 신정규 (전주대학교 한식조리학과)
  • Received : 2014.12.05
  • Accepted : 2014.12.24
  • Published : 2015.02.28

Abstract

High voltage pulsed electric fields (PEF) treatment is one of the more promising nonthermal technologies to fully or partially replace thermal processing. The objective of this research was to investigate the microbial inactivation mechanisms of PEF treatment in terms of intra- and extracellular changes in the cells. Saccharomyces cerevisae cells treated with PEF showed cellular membrane damage. This resulted in the leakage of UV-absorbing materials and intracelluar ions, which increased with increasing treatment time and electric fields strength. This indicates that PEF treatment causes cell death via membrane damage and physical rupture of cell walls. We further confirmed this by Phloxine B staining, a dye that accumulates in dead cells. Using scanning and transmission electron microscopy, we observed morphological changes as well as disrupted cytoplasmic membranes in PEF treated S. cerevisae cells. In addition, PEF treatment led to damaged chromosomal DNA in S. cerevisiae.

비가열 살균 기술 중 본격적인 상업적 실용화를 눈앞에 두고 있는 고전압 펄스 전기장에 의한 미생물의 사멸 기작에 대해 살펴보았다. 세포 현탁액을 고전압 펄스 전기장 처리하였을 경우 처리 시간이나 전기장의 세기가 증가할수록 세포 외액으로 세포내 물질의 유출이 증가하였으며, 세포막 투과성의 변화로 인하여 $K^+$, $Na^+$등이 이온 성분의 유출도 나타났다. 염색시약에 의한 세포의 염색에서 처리시간이 증가함에 따라 염색되는 세포의 수가 증가하였으며, 전자현미경에 의한 세포의 관찰 결과 고전압 펄스 전기장 처리를 받은 세포의 경우 처리 받지 않은 것에 비해 표면이 거칠고 굴곡이 있었으며, 세포막이 터져 세포내 물질이 외부로 유출되고 형태가 일그러진 것이 관찰되었다. 항생물질 첨가에 따른 회복 실험에서 고전압 펄스 전기장 처리에 의해 세포의 단백질 합성 체계에 손상을 입었으며, chromosomal DNA의 분리를 통한 DNA의 손상여부 관찰 결과 약 27.3%의 DNA의 손상이 발생했음을 알 수 있었다. 따라서 고전압 펄스 전기장 처리가 세포벽이나 세포막의 손상뿐만 아니라 대사 체계와 DNA에도 손상을 주는 것을 확인할 수 있었다.

Keywords

References

  1. Mertens B, Knorr D. Development of non-thermal processes for food preservation. Food Technol. 46: 124-133 (1992)
  2. Ray B. Control by New Nonthermal Methods. pp. 495-502. In: Fundamental Food Microbiology (2nd). Ray B, Bhunia A (eds). CRC Press, Inc., Boca Raton, FL, USA (2001)
  3. Stefan T, Claudia S, Guillermo SN, Volker H. Overview of pulsed electric fields processing for food. pp. 93-114. In: Emerging Technologies for Food Processing (2nd). Sun DW (ed). Academic Press, London, UK (2014)
  4. Leistner L, Gorris LGM. Food preservation by combined processes. Final Report of FLAIR Concerted Action No. 7, Subgroup B. EUR 15776 EN. Brussels: European Commission, Directorate-General (1994)
  5. Calderon-Miranda ML, Barbosa-Canovas GV, Swanson BG. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. Int. J. Food Microbiol. 51: 7-17 (1999) https://doi.org/10.1016/S0168-1605(99)00070-7
  6. Castro AJ, Barbosa-Canovas GV, Swanson BG. Microbial inactivation of foods by pulsed electric fields. J. Food Proc. Preserv. 17: 47-73 (1993) https://doi.org/10.1111/j.1745-4549.1993.tb00225.x
  7. Qin BL, Pothakamury UR, Vega H, Martin O, Barbosa-Canovas GV, Swanson BG. Food pasteurization using high-intensity pulsed electric fields. Food Technol. 49: 55-60 (1995)
  8. Pothakamury UR, Monsalve-Gonzalez A, Barbosa-Canovas GV, Swanson BG. High voltage pulsed electric field inactivation of Bacillus subtilis and Lactobacillus delbrueckii. Rev. Esp. Cien. Tec. Ali. 35: 101-107 (1995)
  9. Harrison SL. High intensity pulsed electric field and high hydrostatic pressure processing of apple juice. PhD thesis, Washington State University, Pullman, WA, USA (1996)
  10. Zimmerman U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys. J. 14: 881-899 (1974) https://doi.org/10.1016/S0006-3495(74)85956-4
  11. Mansel WG, Markus WR. Pulsed electric field processing of liquid foods and beverages. pp. 115-145. In: Emerging Technologies for Food Processing (2nd). Sun DW (ed). Academic Press, London, UK (2014)
  12. McDonald CJ, Lloyd SW, Vital MA, Petersson K, Innings F. Effect of pulsed electric fields on microorganisms in orange juice using electric field strengths of 30 and 50 kV/cm. J. Food Sci. 65: 984-989 (2000) https://doi.org/10.1111/j.1365-2621.2000.tb09404.x
  13. Elz-Martinez P, Escol-Hernandez J, Soliva-Fortuny R, Martin-Belloso O. Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiol. 22: 311-319 (2005) https://doi.org/10.1016/j.fm.2004.09.005
  14. Saulis G. Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Eng. Rev. 2: 52-73 (2010) https://doi.org/10.1007/s12393-010-9023-3
  15. Joshi RP, Hu Q, Schoenbach KH, Hjalmarson HP. Improved energy model for membrane electroporation in biological cells subjected to electrical pulses. Phys. Rev. E65: 041920 (2002)
  16. Glaser RW, Leikin SL, Chernomordik LV, Pstushenko VE, Sokirko AI. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim. Biophys. Acta. 940: 275-287 (1988) https://doi.org/10.1016/0005-2736(88)90202-7
  17. Tsong TY. On electroporation of cell membranes and some related phenomena. Bioelectroch. Bioener. 24: 271-295 (1990) https://doi.org/10.1016/0302-4598(90)80028-H
  18. Knorr D, Geulen M, Grahl T, Sitzmann W. Food application of high electric field pulses. Trends Food Sci. Tech. 5: 71-75 (1994) https://doi.org/10.1016/0924-2244(94)90240-2
  19. Shin JK, Pyun YR. Inactivation of Lactobacillus plantarum by pulsed-microwave irradiation. J. Food Sci. 62: 163-166 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04391.x
  20. Hong SI. Inactivation of Lactobacillus plantarum by high pressure carbon dioxide. PhD thesis, Yonsei University, Seoul, Korea (1997)
  21. Shimada S, Andou M, Naito N, Yamada N, Osumi M, Hayashi R. Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biot. 40: 123-131 (1993)
  22. Bender GR, Sutton SVW, Marquis RE. Acid tolerance proton permeabilities and membrane ATPases of oral Streptococci. Infect. Immun. 53: 331-338 (1986)
  23. Tatabe W, Muraji M, Fujii T. The relationship between electropermeabilization and growth phase in a suspension of yeast cells, Saccharomyces cerevisiae. Nippon Nogeik. Kaishi 70: 563-568 (1996)
  24. Delorme E. Transformation of Saccharomyces cerevisiae by electroporation. Appl. Environ. Microb. 55: 2242-2246 (1989)
  25. Phothakamury UR, Barbosa-Cánovas GV, Swanson BG, Spence KD. Ultrastructural changes in Staphylococcus aureus treated with pulsed electric fields. Food Sci. Technol. Int. 3: 113-121 (1997) https://doi.org/10.1177/108201329700300206
  26. Mukherjee TM, Dixon B. Diagnostic electron microscopy procedures. Microsc. Soc. Am. Bull. 23: 200-205 (1993)
  27. El-Sherbeini M, Clemas JA. Nikkomycin Z. Supersensitivity of an echinocandin-resistant mutant of Saccharomyces cerevisiae. Antimicrob. Agents Ch. 39: 200-207 (1995) https://doi.org/10.1128/AAC.39.1.200
  28. Lown JW. Ethidium binding assay for reactive oxygen species generated from reductively activated adriamycin. Vol. 105, pp 532-539. In: Methods in Enzymology. Packer L(ed). Academic press, New York, NY, USA (1984)
  29. Luciana IG, Ana MRP, Rosa JJ. Effect of the sequence of nisin and pulsed electric fields treatments and mechanisms involved in the inactivation of Listeria innocua in whey. J. Food Eng. 79: 188-193 (2007) https://doi.org/10.1016/j.jfoodeng.2006.01.043
  30. Russell NJ, Colley M, Simpson RK, Trivett AJ, Evans RI. Mechanisms of action of pulsed high electric field (PHEF) on the membranes of food-poisoning bacteria is an 'all-or-nothing' effect. Int. J. Food Microbiol. 55: 133-136 (2000) https://doi.org/10.1016/S0168-1605(00)00169-0
  31. Scopes RK. Protein Purification Principles and Practice. 3rd ed. Springer-Verlag Heidelberger, Berlin, Germany. pp. 46-48 (1994)
  32. Iandolo JJ, Ordal ZJ. Repair of thermal injury of Staphylococcus aureus. J. Bacteriol. 91: 134-142 (1966)
  33. Hurst A, Hughes A, Collins-Thompson DL, Shah BG. Relationship between loss of magnesium and loss of salt tolerance after sublethal heating of Staphylococcus aureus. Can. J. Microbiol. 20: 1153-1158 (1974) https://doi.org/10.1139/m74-178
  34. Kim DU, Pyun YR. Food processing by ohmic heating. Food Sci. Ind. 27: 21-33 (1994)
  35. Sastry SK, Kim HJ. Ohmic heating for thermal processing of Foods: Government, industry and academic perspectives. Food Technol. 50: 253-261 (1996)
  36. Unal R, Yousef AE, Dunne PC. Spectrophotometric assessment of bacterial cell membrane damage by pulsed electric field. Innov. Food Sci. Emerg. 3: 247-254 (2002) https://doi.org/10.1016/S1466-8564(02)00033-4
  37. Calderón-Miranda ML, Barbosa-Cánovas GV, Swanson BG. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk. Int. J. Food Microbiol. 51: 31-38 (1999) https://doi.org/10.1016/S0168-1605(99)00071-9
  38. Singleton P, Sainsbury D. Dictionary of microbiology and molecular biology 3rd Ed. John Wiley & Sons, Ltd., Chichester, UK. p 807 (1987)
  39. Vespa MN, Lebecq JC. The morphology of candida albicans in two different Earle base media in the presence of tunicamycin. Mycoses 39: 271-277 (1996) https://doi.org/10.1111/j.1439-0507.1996.tb00137.x
  40. Buazzi MM, Marth EH. Sites of action by propionate on Listeria monocytogenes. Int. J. Food Microbiol. 15: 109-119 (1992) https://doi.org/10.1016/0168-1605(92)90140-X