DOI QR코드

DOI QR Code

Bioabsorbable osteofixation for orthognathic surgery

  • Park, Young-Wook (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University)
  • 투고 : 2015.01.11
  • 심사 : 2015.01.11
  • 발행 : 2015.12.31

초록

Orthognathic surgery requires stable fixation for uneventful healing of osteotomized bony segments and optimal remodeling. Titanium plates and screws have been accepted as the gold standard for rigid fixation in orthognathic surgery. Although titanium osteofixation is the most widely used approach, the use of bioabsorbable devices has been increasing recently. Biodegradation of bioabsorbable devices eliminates the need for a second operation to remove metal plates and screws. However, long-term stability and relapse frequency in bioabsorbable osteofixation are still insufficiently studied, especially in cases of segmental movements of great magnitude or segmental movements to a position where bony resistance exists. This paper reviews the background, techniques, and complications of bioabsorbable osteofixation and compares bioabsorbable and titanium osteofixation in orthognathic surgery in terms of skeletal stability.

키워드

참고문헌

  1. Haug RH (1996) Retention of asymptomatic bone plates used for orthognathic surgery and facial fractures. J Oral Maxillofac Surg 54:611-617 https://doi.org/10.1016/S0278-2391(96)90644-8
  2. Lalor PA, Revell PA, Gray AB, Wright S, Railton GT, Freemen MA (1991) Sensitivity to titanium: a cause of implant failure? Br J Bone Joint Surg 73:25-28
  3. France TJ, Birely BC, Ringelman PR, Manson PN (1992) The fate of plates and screws after facial fracture reconstructioin. Plast Reconstr Surg 90:568-573 https://doi.org/10.1097/00006534-199210000-00004
  4. Schmidt BL, Perrott DH, Mahan D, Kearns G (1998) The removal of plates and screws after Le Fort I osteotomy. J Oral Maxillofac Surg 56:184-188 https://doi.org/10.1016/S0278-2391(98)90865-5
  5. Ji B, Wang C, Liu L, Long J, Tian W, Wang H (2010) A biomechanical analysis of titanium miniplates used for treatment of mandibular symphyseal fractures with the finite element method. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e21-e27 https://doi.org/10.1016/j.tripleo.2009.11.003
  6. Edwards RC, Kiely KD, Eppley BL (2001) Fixation of bimaxillary osteotomies with resorbable plates and screws: Experience in 20 consecutive cases. J Oral Maxillofac Surg 59:271-276 https://doi.org/10.1053/joms.2001.20988
  7. Matthews NS, Khambay BS, Ayoub AF, Koppel D, Wood G (2003) Preliminary assessment of skeletal stability after sagittal split mandibular advancement using a bioresorbable fixation system. Br J Oral Maxillofac Surg 41:179-184 https://doi.org/10.1016/S0266-4356(03)00048-2
  8. Kwon TK, Kim YD, Shin SH, Kim WK, Kim JR, Chung IK (2005) Stability after surgical correction of mandibular prognathism using bilateral saggital split ramus osteotomy and fixation with poly-L/DL-lactide copolymer screws (BiosorbTMFX). J Korean Assoc Maxillofac Plast Reconstr Surg 2:160-163
  9. Eppley BL (2007) Bioabsorbable plate and screw fixation in orthognathic surgery. J Craniofac Surg 18:818-825 https://doi.org/10.1097/scs.0b013e3180684933
  10. Tuovinen V, Suuronen R, Teittinen M, Nurmenniemi P (2010) Comparison of the stability of bioabsorbable and titanium osteosynthesis materials for rigid internal fixation in orthognathic surgery. A prospective randomized controlled study in 101 patients with 192 osteotomies. Int J Oral Maxillofac Surg 39:1059-1065 https://doi.org/10.1016/j.ijom.2010.07.012
  11. Kulkarni RK, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg 93:839-843 https://doi.org/10.1001/archsurg.1966.01330050143023
  12. Cutright DE, Hunsuck EE, Beasley JD (1971) Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg 29:393-397
  13. Suuronen R, Kallela I, Lindqvist C (2000) Bioabsorbable plates and screws: Current state of the art in facial fracture repair. J Craniomaxillofac Trauma 6:19-27
  14. Ylikontiola L, Sundqvuist K, Sandor GK, Tormala P, Ashammakhi N (2004) Self-reinforced bioresorbable poly-L/DL-lactide [SR-P(L/DL)LA] 70/30 miniplates and miniscrews are reliable for fixation of anterior mandibular fractures: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:312-317 https://doi.org/10.1016/j.tripleo.2003.10.030
  15. Choi J, Kim JR, Ha TJ, Yu JB, Kim IK (2005) The prognosis of fixation of mandibular fractures with biodegradable plates and screws. J Korean Assoc Maxillofac Plast Reconstr Surg 1:32-38
  16. Mohamed-Hashem IK, Mitchell DA (2000) Resorbable implants (plates and screws) in orthognathic surgery. J Orthod 27:198-199 https://doi.org/10.1093/ortho/27.2.198
  17. Turvey TA, Bell RB, Tejera TJ, Proffit WR (2002) The use of self-reinforced biodegradable bone plates and screws in orthognathic surgery. J Oral Maxillofac Surg 60:59-65
  18. Peltoniemi HH, Tulamo RM, Toivonen T, Hallikainen D, Tormala P, Waris T (1999) Biodegradable semirigid plate and miniscrew fixation compared with rigid titanium fixation in experimental calvarial osteotomy. J Neurosurg 90:910-917 https://doi.org/10.3171/jns.1999.90.5.0910
  19. Bergsma EJ, de Bruijn WC, Rozema FR, Bos RR, Boering G (1995) Late degradation tissue response to poly (L-lactide) bone plates and screws. Biomaterials 16:25-31 https://doi.org/10.1016/0142-9612(95)91092-D
  20. Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC (1993) Foreign body reaction to resorbable poly (L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg 51:666-670 https://doi.org/10.1016/S0278-2391(10)80267-8
  21. Surronen R, Haers PE, Lindqvist C, Sailer HF (1999) Update on bioresorbable plates in maxillofacial surgery. Facial Plast Surg 15:61-72 https://doi.org/10.1055/s-2008-1064301
  22. Wiltfang J, Merten HA, Schultze-Mosgau S, Schrell U, Wenzel D, Kessler P (2000) Biodegradable miniplates (LactoSorb): long-term results in infant minipigs and clinical results. J Craniofac Surg 11:239-243 https://doi.org/10.1097/00001665-200011030-00006
  23. Edwards RC, Kiely KD, Eppley BL (2001) The fate of resorbable poly-L-lactic/ polyglycolic acid (LactoSorb) bone fixation devices in orthognathic surgery. J Oral Maxillofac Surg 59:19-25 https://doi.org/10.1053/joms.2001.19267
  24. Mazzonetto R, Paza AO, Spagnoli DB (2004) A retrospective evaluation of rigid fixation in orthognathic surgery using a biodegradable self-reinforced (70 L:30DL) polylactide. Int J Oral Maxillofac Surg 33:664-669 https://doi.org/10.1016/j.ijom.2004.02.001
  25. Kim BC, Padwa BL, Park HS, Jung YS (2011) Stability of maxillary position after Le Fort I osteotomy using self-reinforced biodegradable poly-70 L/30DL-lactide miniplates and screws. J Oral Maxillofac Surg 69:1442-1446 https://doi.org/10.1016/j.joms.2010.05.033
  26. Hochuli-Vieira E, Cabrini Gabrielli MA, Pereira-Filho VA, Gabrielli MF, Padilha JG (2005) Rigid internal fixation with titanium versus bioresorbable miniplates in the repair of mandibular fractures in rabbits. Int J Oral Maxillofac Surg 34:167-173
  27. Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA): part I. Basic characteristics. Biomaterials 20:859-877 https://doi.org/10.1016/S0142-9612(98)00241-5
  28. Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA): part II. Practical properties of miniscrews and miniplates. Biomaterials 22:3179-3211 https://doi.org/10.1016/S0142-9612(01)00070-9
  29. Shikinami Y, Matsuse Y, Nakamura T (2005) The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly L-lactide (F-u-HA/PLLA). Biomaterials 26:5542-5551 https://doi.org/10.1016/j.biomaterials.2005.02.016
  30. Landes CA, Ballon A, Tran A, Ghanaati S, Sader R (2014) Segmental stability in orthognathic surgery: Hydroxyapatite/poly L-lactide osteoconductive composite versus titanium miniplate osteosynthesis. J Craniomaxillofac Surg 41:930-942
  31. Ballon A, Laudemann K, Sader R, Landes CA (2012) Segmental stability of resorbable P(L/DL)LA-TMC osteosynthesis versus titanium miniplates in orthognatic surgery. J Craniomaxillofac Surg 40:e408-e414 https://doi.org/10.1016/j.jcms.2012.02.014
  32. Maurer P, Holweg S, Knoll WD, Schubert J (2002) Study by finite element method of the mechanical stress of selected biodegradable osteosynthesis screws in sagittal ramus osteotomy. Br J Oral Maxillofac Surg 40:76-83. https://doi.org/10.1054/bjom.2001.0752
  33. Kallela I, Laine P, Suuronen R, Lindqvist C, Iizuka T (2005) Assessment of material-and technique-related complications following sagittal split osteotomies stabilized by biodegradable polylactide screws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:4-10 https://doi.org/10.1016/j.tripleo.2004.04.017
  34. Ueki K, Marukawa K, Shimada M, Nakagawa K, Alam S, Yamamoto E (2006) Maxillary stability following Le Fort I osteotomy in combination with sagittal split ramus osteotomy and intraoral vertical ramus osteotomy: a comparative study between titanium miniplate and poly-L-lactic acid plate. J Oral Maxillofac Surg 64:74-80
  35. Kim YK, Kim YJ, Yun PY, Kim JW (2009) Evaluation of skeletal and surgical factors related to relapse of mandibular setback surgery using the bioabsorbable plate. J Craniomaxillofac Surg 37:63-68 https://doi.org/10.1016/j.jcms.2008.10.011
  36. Ko EW, Huang CS, Lo LJ, Chen YR (2013) Alteration of masticatory electromyographic activity and stability of orthognathic surgery in patients with skeletal class III malocclusion. J Oral Maxillofac Surg 71:1249-1260 https://doi.org/10.1016/j.joms.2013.01.002
  37. Ueki K, Okabe K, Miyazaki M, Munozawa A, Mori A, Marukawa K, Nakagawa K, Yamamoto E (2011) Skeletal stability after mandibular setback surgery: comparisons among unsintered hydroxyapatite/poly-L-lactic acid plate, poly-L-lactic acid plate, and titanium plate. J Oral Maxillofac Surg 69:1464-1468 https://doi.org/10.1016/j.joms.2010.06.187
  38. Sittitavornwong S, Waite PD, Dann JJ, Kohn MW (2006) The stability of maxillary osteotomies fixated with biodegradable mesh in orthognathic surgery. J Oral Maxillofac Surg 64:1631-1634 https://doi.org/10.1016/j.joms.2006.06.278
  39. Meara DJ, Knoll MR, Holmes JD, Clark DM (2012) Fixation of Le Fort I osteotomies with poly-DL-lactic acid mesh and ultrasonic welding-a new technique. J Oral Maxillofac Surg 70:1139-1144 https://doi.org/10.1016/j.joms.2011.03.011
  40. Kim MK, Park YW (2009) Post-operative skeletal stability of the maxilla treated with Le Fort I and U-shaped osteotomies in simultaneous maxillomandibular orthognathic surgery. J Korean Assoc Maxillofac Plast Reconstr Surg 31:485-491
  41. Landes CA, Kriener S (2003) Resorbable plate osteosynthesis of sagittal split osteotomies with major bone movement. Plast Reconstr Surg 111:1828-1840 https://doi.org/10.1097/01.PRS.0000056867.28731.0E
  42. Cheung LK, Chow LK, Chiu WK (2004) A randomized controlled trial of resorbable versus titanium fixation for orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:386-397 https://doi.org/10.1016/j.tripleo.2004.02.069
  43. van Bakelen NB, Buijs GJ, Jansma J, de Visscher JG, Hoppenreijs TJ, Bergsma JE, Stegenga B, Bos RR (2013) Comparison of biodegradable and titanium fixation in maxillofacial surgery: a two-year multi-center randomized controlled trial. J Dent Res 92:1100-1105 https://doi.org/10.1177/0022034513508953
  44. Laine P, Kontio R, Lindqvist C, Suuronen R (2004) Are there any complications with bioabsorbable fixation devices? A 10 year review in orthognathic surgery. Int J Oral Maxillofac Surg 33:240-244 https://doi.org/10.1006/ijom.2003.0510
  45. Turvey TA, Proffit WP, Phillips C (2011) Biodegradable fixation for craniomaxillofacial surgery: a 10-year experience involving 761 operations and 745 patients. Int J Oral Maxillofac Surg 40:244-249 https://doi.org/10.1016/j.ijom.2010.11.024
  46. Haers PE, Sailer HF (1998) Biodegradable self-reinforced poly-L/DL-lactide plates and screws in bimaxillary orthognathic surgery: short term skeletal stability and material related failures. J Craniomaxillofac Surg 26:363-372 https://doi.org/10.1016/S1010-5182(98)80069-3
  47. Shand JM, Heggie AA (2000) Use of a resorbable fixation system in orthognathic surgery. Br J Oral Maxillofac Surg 38:335-337 https://doi.org/10.1054/bjom.1999.0287
  48. Ahn YS, Kim SG, Baik SM, Kim BO, Kim HK, Moon SY, Lim SH, Kim YK, Yun PY, Son JS (2010) Comparative study between resorbable and nonresorbable plates in orthognathic surgery. J Oral Maxillofac Surg 68:287-292 https://doi.org/10.1016/j.joms.2009.07.020
  49. Landes CA, Ballon A (2006) Five-year experience comparing resorbable to titanium miniplate osteosynthesis in cleft lip and palate orthognathic surgery. Cleft Palate Craniofac J 43:67-74 https://doi.org/10.1597/04-167R1.1
  50. Turvey TA, Bell RB, Phillips C, Proffit WR (2006) Self-reinforced biodegradable screw fixation compared with titanium screw fixation in mandibular advancement. J Oral Maxillofac Surg 64:40-46
  51. Stockmann P, Bohm H, Driemel O, Muhling J, Pistner H (2010) Resorbable versus titanium osteosynthesis devices in bilateral sagittal split ramus osteotomy of the mandible-the results of a two centre randomized clinical study with an eight-year follow-up. J Craniomaxillafac Surg 38:522-528 https://doi.org/10.1016/j.jcms.2010.01.002
  52. Paeng JY, Hong J, Kim CS, Kim MJ (2012) Comparative study of skeletal stability between bicortical resorbable and titanium screw fixation after sagittal split ramus osteotomy for mandibular prognathism. J Craniomaxillafac Surg 40:660-664 https://doi.org/10.1016/j.jcms.2011.11.001
  53. Ueki K, Nakagawa K, Marukawa K, Takazakura D, Shimada M, Takatsuka S, Yamamoto E (2005) Changes in condylar long axis and skeletal stability after bilateral sagittal split ramus osteotomy with poly-L-lactic acid or titanium plate fixation. Int J Oral Maxillofac Surg 34:627-634 https://doi.org/10.1016/j.ijom.2005.02.013
  54. Costa F, Robiony M, Zorzan E, Zerman N, Politi M (2006) Stability of skeletal Class III malocclusion after combined maxillary and mandibular procedures: titanium versus resorbable plates and screws for maxillary fixation. J Oral Maxillofac Surg 64:642-651 https://doi.org/10.1016/j.joms.2005.11.043
  55. Park JM, Park YW (2010) Postoperative stability of fixation with absorbables in simultaneous maxillomandibular orthognathic surgery. J Korean Assoc Maxillofac Plast Reconstr Surg 32:126-131
  56. Lee JY, Kim YK, Yun PY, Lee NK, Kim JW, Choi JH (2014) Evaluation of stability after orthognathic surgery with minimal orthodontic preparation: comparison according to 3 types of fixation. J Craniofac Surg 25:911-915 https://doi.org/10.1097/SCS.0000000000000609
  57. Landes CA, Ballon A (2006) Skeletal stability in bimaxillary orthognathic surgery: P(L/DL)LA-resorbable versus titanium osteofixation. Plast Reconstr Surg 118:703-721 https://doi.org/10.1097/01.prs.0000232985.05153.bf
  58. Landes CA, Ballon A, Sader R (2007) Segment stability in bimaxillary orthognathic surgery after resorbable Poly(L-lactide-co-glycolide) versus titanium osteosyntheses. J Craniofac Surg 18:1216-1229 https://doi.org/10.1097/scs.0b013e31814b29df
  59. Moure C, Qassemyar Q, Dunaud O, Neiva C, Testelin S, Devauchelle B (2012) Skeletal stability and morbidity with self-reinforced P (L/DL) LA resorbable osteosynthesis in bimaxillary orthognathic surgery. J Craniomaxillofac Surg 40:55-60 https://doi.org/10.1016/j.jcms.2011.01.011

피인용 문헌

  1. Biodegradable osteofixation in bimaxillary orthognathic surgery vol.43, pp.6, 2015, https://doi.org/10.5125/jkaoms.2017.43.6.361
  2. Experimental study on segmental stability of mandibular osteotomy: Bioresorbable mesh versus titanium osteosynthesis vol.42, pp.3, 2018, https://doi.org/10.21851/obr.42.03.201809.121
  3. Castor polyurethane used as osteosynthesis plates: microstructural and thermal analysis vol.29, pp.2, 2019, https://doi.org/10.1590/0104-1428.02418
  4. Bone Regeneration Potential of Uncalcined and Unsintered Hydroxyapatite/Poly l-lactide Bioactive/Osteoconductive Sheet Used for Maxillofacial Reconstructive Surgery: An In Vivo Study vol.12, pp.18, 2015, https://doi.org/10.3390/ma12182931
  5. Immunomodulation for maxillofacial reconstructive surgery vol.42, pp.None, 2015, https://doi.org/10.1186/s40902-020-00249-4
  6. Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction vol.12, pp.12, 2015, https://doi.org/10.3390/polym12122938
  7. Feasibility of Application of the Newly Developed Nano-Biomaterial, β-TCP/PDLLA, in Maxillofacial Reconstructive Surgery: A Pilot Rat Study vol.11, pp.2, 2015, https://doi.org/10.3390/nano11020303
  8. Bioactive Glass Fiber-Reinforced Plastic Composites Prompt a Crystallographic Lophelia Atoll-Like Skeletal Microarchitecture Actuating Periosteal Cambium vol.13, pp.27, 2015, https://doi.org/10.1021/acsami.1c07950
  9. A Novel Screw Drive for Allogenic Headless Position Screws for Use in Osteosynthesis-A Finite-Element Analysis vol.8, pp.10, 2021, https://doi.org/10.3390/bioengineering8100136
  10. A Narrative Review of u-HA/PLLA, a Bioactive Resorbable Reconstruction Material: Applications in Oral and Maxillofacial Surgery vol.15, pp.1, 2022, https://doi.org/10.3390/ma15010150