DOI QR코드

DOI QR Code

SPARQL-DL Processor to Extract OWL Ontologies from Relational Databases

관계형 데이터베이스로부터 OWL 온톨로지를 추출하기 위한 SPARQL-DL 프로세서

  • Choi, Ji-Woong (School of Computer Science and Engineering, Soongsil University) ;
  • Kim, Myung-Ho (School of Computer Science and Engineering, Soongsil University)
  • 최지웅 (숭실대학교 IT대학 컴퓨터학부) ;
  • 김명호 (숭실대학교 IT대학 컴퓨터학부)
  • Received : 2014.10.15
  • Accepted : 2014.11.06
  • Published : 2015.03.31

Abstract

This paper proposes an implementation of SPARQL-DL, which is a query language for OWL ontologies, for query-answering over the OWL ontologies virtually generated from existing RDBs. The proposed SPARQL-DL processor internally translates input SPARQL-DL queries into SQL queries and then executes the translated queries. There are two advantages in the query processing method. First, another repository to store OWL ontologies generated from RDBs is not required. Second, a large ABox generated from an RDB instance is able to be served without using Tableau algorithm based reasoners which have a problem in large ABox reasoning. Our algorithm for query rewriting is designed to create one corresponding SQL query from one input SPARQL-DL query to minimize the overhead by establishing connections with RDBs.

본 논문에서는 RDB로부터 가상적 변환에 의해 생성되는 OWL 온톨로지의 질의 응답을 위하여 OWL을 위한 질의어인 SPARQL-DL의 구현 방법을 제안한다. 제안하는 SPARQL-DL 프로세서는 입력된 SPARQL-DL 질의문을 내부에서 SQL 질의문으로 변환하여 실행시킨다. 이러한 질의 처리 방식은 두 가지의 장점이 있다. 첫째, RDB로부터 생성된 OWL 온톨로지를 저장하기 위한 별도의 저장소가 요구되지 않는다. 둘째, 대용량 ABox 추론에 문제점을 나타내는 Tableau 알고리즘 기반의 추론기의 사용 없이도 RDB 인스턴스로부터 생성된 대용량 ABox가 서비스 될 수 있다. 본 논문의 SPARQL-DL 질의문으로부터 SQL 질의문을 생성하는 알고리즘은 RDB와의 연결 수립에 따른 오버헤드를 최소화하기 위하여 입력된 하나의 SPARQL-DL 질의문이 하나의 SQL 질의문으로 변환되도록 설계되어있다.

Keywords

References

  1. B. He, M. Patel, Z. Zhang, and K. C. Chang, "Accessing the deep web," Communication of the ACM, Vol. 50, pp.94-101, May 2007.
  2. C. Bizer, and A. Seaborne, "D2RQ-treating non-RDF databases as virtual RDF graphs," 3rd International Semantic Web Conference, November 2004.
  3. S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumuller, "Triplify: lightweight linked data publication from relational databases," Proceedings of the 18th International Conference on World Wide Web, pp. 621-630, April 2009.
  4. O. Erling, and I. Mikhailov, "RDF Support in the Virtuoso DBMS," Proceedings of the 1st Conference of Social Semantic Web, pp. 59-68, September 2007.
  5. RDB2RDF, http://www.w3.org/2001/sw/rdb2rdf/
  6. I. Horrocks, L. Li, D. Turi, and S. Bechhofer, "The Instance Store: DL Reasoning with Large Numbers of individuals," Proceedings of the Description Logic Workshop, pp. 31-40, June 2004.
  7. C. Chen, V. Haarslev, and J. Wang, "LAS: extending Racer by a large Abox store," Proceedings of the 2005 International Workshop on Description Logics, pp. 200-207, July 2005.
  8. B. Motik, and U. Sattler, "A Comparison of Reasoning Techniques for Querying Large Description Logic Aboxes," Proceedings of LPAR'06, pp. 227-241, November 2006.
  9. E. Sirin, and B. Parsia, "SPARQL-DL: SPARQL query for OWL-DL," Third OWL Experiences and Directions Workshop, June 2007.
  10. M. Li, X. Du, and S. Wang, "Learning Ontology from Relational Database," Proceedings of the 4th International Conference on Machine Learning and Cybernetics. Vol. 6 pp. 3410-3415, August 2005.
  11. Z. Xu, S. Zhang, and Y. Dong, "Mapping between relational database schema and OWL ontology for deep annotation," Proceeding of IEEE/WIC/ACM International Conference on Web Intelligence, pp. 548-552, December 2006.
  12. N. Cullot, R. Ghawi, and K. Yetongno, "DB2OWL: A Tool for Automatic Database-to-Ontology Mapping," In Proceedings of the 15th Italian Symposium on Advanced Database Systems (SEBD 2007), pp. 491-494, June 2007.
  13. F. Cerbah, "Mining the Content of Relational Databases to Learn Ontologies with Deeper Taxonomies," Proceedings of 2008 IEEE/WIC/ACMInternational Conference onWeb Intelligence and Intelligent Agent Technology Workshops, pp. 553-557, December 2008.
  14. N. Alalwan, H. Zedan, and F. Siewe, "Generating OWL Ontology for Database Integration," Proceedings of the Third International Conference on Advances in Semantic Processing, pp. 22-31, October 2009.
  15. J. F. Sequeda, and D. P. Miranker, "Ultrawrap: SPARQL execution on relational data," Web Semantics: Science, Services and Agents on the WorldWideWeb, Vol. 22, pp. 19-39, October 2013. https://doi.org/10.1016/j.websem.2013.08.002
  16. Ji Woong Choi and Myung Ho Kim, "OWL/Relational Mapping Rules to Use Relational Databases as OWL 2 Web Ontologies," Journal of The Korea Society of Computer and Information, Vol. 16, No. 7, pp. 35-47, July 2011. https://doi.org/10.9708/jksci.2011.16.7.035
  17. The OWL API, http://owlapi.sourceforge.net/
  18. Pellet, http://clarkparsia.com/pellet/
  19. derivo SPARQL-DL engine, http://www.derivo.de/
  20. P. Kremen, and E. Sirin, "SPARQL-DL Implementation Experience," 4th OWL Experiences and Directions Workshop (OWLED-2008 DC), October 2008.