DOI QR코드

DOI QR Code

Electrical and Optical Properties of F-Doped SnO2 Thin Film/Ag Nanowire Double Layers

F-Doped SnO2 Thin Film/Ag Nanowire 이중층의 전기적 및 광학적 특성

  • Kim, Jong-Min (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Tae-Kun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김종민 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과) ;
  • 이태근 (서울과학기술대학교 신소재공학과)
  • Received : 2015.02.02
  • Accepted : 2015.02.13
  • Published : 2015.03.27

Abstract

Fluorine-doped $SnO_2$ (FTO) thin film/Ag nanowire (NW) double layers were fabricated by means of spin coating and ultrasonic spray pyrolysis. To investigate the optimum thickness of the FTO thin films when used as protection layer for Ag NWs, the deposition time of the ultrasonic spray pyrolysis process was varied at 0, 1, 3, 5, or 10 min. The structural, chemical, morphological, electrical, and optical properties of the double layers were examined using X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, the Hall effect measurement system, and UV-Vis spectrophotometry. Although pure Ag NWs formed isolated droplet-shaped Ag particles at an annealing temperature of $300^{\circ}C$, Ag NWs covered by FTO thin films maintained their high-aspect-ratio morphology. As the deposition time of the FTO thin films increased, the electrical and optical properties of the double layers degraded gradually. Therefore, the double layer fabricated with FTO thin films deposited for 1 min exhibited superb sheet resistance (${\sim}14.9{\Omega}/{\Box}$), high optical transmittance (~88.6 %), the best FOM (${\sim}19.9{\times}10^{-3}{\Omega}^{-1}$), and excellent thermal stability at an annealing temperature of $300^{\circ}C$ owing to the good morphology maintenance of the Ag NWs covered by FTO thin films.

Keywords

References

  1. A. R. Madaria, A. Kumar and C. Zhou, Nanotechnology, 22, 245201 (2011). https://doi.org/10.1088/0957-4484/22/24/245201
  2. B. Y. Oh, M. C. Jeong, T. H Moon, W. Lee, J. M. Myoung, J. Y. Hwang and D. S. Seo, J. Appl. Phys., 99, 124505 (2006). https://doi.org/10.1063/1.2206417
  3. M. Eritt, C. May, K. Leo, M. Toerker and C. Radehaus, Thin Solid Films, 518, 3042 (2010). https://doi.org/10.1016/j.tsf.2009.09.188
  4. C. J. Brabec, Sol. Energy Mater. Sol. Cells, 83, 273 (2004). https://doi.org/10.1016/j.solmat.2004.02.030
  5. T. L. Chen, D. S. Ghosh, N. Formica and V. Pruneri, Nanotechnology, 23, 395603 (2012). https://doi.org/10.1088/0957-4484/23/39/395603
  6. D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley and J. C. de Mello, Adv. Mater., 23, 4371 (2011). https://doi.org/10.1002/adma.201100871
  7. Y. C. Lu and K. S. Chou, Nanotechnology, 21, 215707 (2010). https://doi.org/10.1088/0957-4484/21/21/215707
  8. A. Kim, Y. Won, K. Woo, C. H. Kim and J. Moon, ACS Nano, 7, 1081 (2013). https://doi.org/10.1021/nn305491x
  9. K. H. Choi, J. Kim, Y. J. Noh, S. I. Na and H. K. Kim, Sol. Energy Mater. Sol. Cells, 110, 147 (2013). https://doi.org/10.1016/j.solmat.2012.12.022
  10. Y. Ahn, Y. Jeong and Y. Lee, ACS Appl. Mater. Interfaces, 4, 6410 (2012). https://doi.org/10.1021/am301913w
  11. A. Nakaruk, D. Ragazzon and C. C. Sorrell, Thin Solid Films, 518, 3735 (2010). https://doi.org/10.1016/j.tsf.2009.10.109
  12. P. Singh, A. Kumar, Deepak and D. Kaur, J. Cryst. Growth, 306, 303 (2007). https://doi.org/10.1016/j.jcrysgro.2007.05.023
  13. S. I. Noh, H. J. Ahn and D. H. Riu, Ceram. Int., 38, 3735 (2012). https://doi.org/10.1016/j.ceramint.2012.01.018
  14. E. Shanthi, V. Dutta, A. Banerjee and K. L. Chopra, J. Appl. Phys., 51, 6243 (1980). https://doi.org/10.1063/1.327610
  15. C. W. Cho, J. H. Lee, D. H. Riu and C. Y. Kim, Jpn. J. Appl. Phys., 51, 045001 (2012). https://doi.org/10.7567/JJAP.51.045001
  16. S. J. Ikhmayies and R. N. Ahmad-Bitar, Mater. Sci. Semicond. Process., 12, 122 (2009). https://doi.org/10.1016/j.mssp.2009.09.003
  17. D. Miao, Q. Zhao, S. Wu, Z. Wang, X. Zhang and X. Zhao, J. Non-Cryst. Solids, 356, 2557 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.06.076
  18. W. Z. Samad, M. M. Salleh, A. Shafiee and M. A. Yarmo, Sains Malaysiana, 40, 251 (2011).
  19. B. R. Koo and H. J. Ahn, Appl. Phys. Express, 7, 075002 (2014). https://doi.org/10.7567/APEX.7.075002
  20. O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino and T. Makino, Appl. Phys. Lett., 89, 091904 (2006). https://doi.org/10.1063/1.2337542
  21. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong and Y. Jin, Acta Mater., 61, 5429 (2013). https://doi.org/10.1016/j.actamat.2013.05.031
  22. J. Liu, A. W. Hains, J. D. Servaites, M. A. Ratner and T. J. Marks, Chem. Mater., 21, 5258 (2009). https://doi.org/10.1021/cm902265n

Cited by

  1. Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis vol.26, pp.5, 2016, https://doi.org/10.3740/MRSK.2016.26.5.258