DOI QR코드

DOI QR Code

Spatial Analysis of Flood Inundation for Ensuring Stream Space

하천공간 확보를 위한 홍수의 공간적 범람 분석

  • 최천규 (한국건설기술연구원 수자원.하천연구소) ;
  • 김주훈 (한국건설기술연구원 수자원.하천연구소) ;
  • 김규호 (한국건설기술연구원 수자원.하천연구소) ;
  • 김길호 (한국건설기술연구원 수자원.하천연구소)
  • Received : 2015.01.09
  • Accepted : 2015.02.16
  • Published : 2015.04.01

Abstract

This study is to select the areas to ensure stream space or to implement flood defence measures according to flood frequencies by classifying the stream segment using river bed slope in Mangyeong river. The analysis result for each stream segment showed that the variation of flood inundation area was small in upper stream catchment. But in the lower stream area, the inundation area became larger greatly according to the increase of flood return period. This study classified the catchment of each steam segment as the region of ensuring stream space (ESS), below 10% residential area ratio, and the region of reinforcing flood defence (RFD), over 10% residential area ratio. The analysis results showed that the lower stream area included more RFD regions than upper stream area, and the upper stream area included more ESS regions than lower stream area. In future study, the regions stream spaces can be ensured will be analyzed considering the past stream morphology and the positions of wetlands.

본 연구는 만경강 유역을 대상으로 하천을 하도경사를 이용하여 구분하고 빈도별 홍수량에 따라 확보해야 하는 공간과 홍수 방어 대책 수립 지역을 선정하였다. 하천 구분에 의한 분석결과 상류하천 유역에서는 빈도별 홍수량이 커져도 홍수범람면적의 변화가 작으나 하류 하천유역의 경우 빈도별 홍수량이 커짐에 따라 범람면적이 크게 증가하는 것으로 나타났다. 또한, 하천구간별에 따라 주거지역 면적비율이 10%이하인 지역에 대해서는 하천공간 확보 가능 지역, 그리고 10% 이상인 지역은 홍수방어 보강지역으로 선정하고 분석 수행하였다. 분석결과 하류지역은 하천공간 확보 가능 지역이 많고, 상류지역은 홍수방어 보강지역이 많은 것으로 분석되었다. 향후 과거 하천 형태 및 습지 분포 위치 등을 고려한 하천공간 확보 가능지역을 분석하고자 한다.

Keywords

References

  1. Bates, P. D. and De Roo, A. P. J. (2000). "A simple raster-based model for flood inundation simulation." J. of Hydrology, Vol. 236, No. 1-2, pp. 54-77. https://doi.org/10.1016/S0022-1694(00)00278-X
  2. Choi, C. K., Choi, Y. S. and Kim, K. T. (2013). "Analysis of flood inundation using LiDAR and LISFLOOD model." J. of the Korean Association of Geographical Information Studies, Vol. 16, No. 4, pp. 1-15 (in Korean).
  3. Choi, C. K., Choi, Y. S. and Kim, K. T. (2014). "Comparison and evaluation of the inundation areas by levee breaching using LISFLOOD." J. of Wetlands Research, Vol. 16, No. 3, pp. 383-392 (in Korean). https://doi.org/10.17663/JWR.2014.16.3.383
  4. Hong, I., Kang, J. G., Kang, S. J. and Yeo, H. K. (2012). "Functional assessment for preservation and restoration of wetland-type old river channel: Mangyoung River." J. of the Korean Society of Civil Engineering, Vol. 32, No. 4B, pp. 213-220 (in Korean). https://doi.org/10.12652/Ksce.2012.32.4B.213
  5. Horritt, M. S. and Bates, P. D. (2002). "Evaluation of 1D and 2D numerical models for predicting river flood inundation." J. of Hydrology, Vol. 268, pp. 87-99. https://doi.org/10.1016/S0022-1694(02)00121-X
  6. Hunter, N. M., Bates, P. D., Horritt, M. S. and Wilson, M. D. (2007). "Simple spatially-distributed models for predicting flood inundation: A Review." Geomorphology, Vol. 90, pp. 208-225. https://doi.org/10.1016/j.geomorph.2006.10.021
  7. Kang, H. S., Cho, S. Y., and Song, S. I. (2011). "A study on flood storage plans of farmlands for extreme flood reduction." J. of Korea Water Resource Association, Vol. 44, No. 10, pp. 787-795 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.10.787
  8. Korea Environment Institute (KEI) (2009). Fundamental research on costal landward boundaries integrated flood forecasting methods according to the climate change (in Korean).
  9. Ministry of Land, Transport and Maritime Affairs (MLTMA) (2012). Mangyoung river river maintenance master plan report (in Korean).
  10. Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R. and Matgen, P. (2007). "Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observation." Hydrol. Earth Syst. Sci., Vol. 11, No. 2, pp. 739-752. https://doi.org/10.5194/hess-11-739-2007